Higher risk for long-term cognitive and behavioral impairments is one of the hallmarks of extreme prematurity (EP) and pregnancy-associated fetal adverse conditions such as intrauterine growth restriction (IUGR). While neurodevelopmental delay and abnormal brain function occur in the absence of overt brain lesions, these conditions have been recently associated with changes in microstructural brain development. Recent imaging studies indicate changes in brain connectivity, in particular involving the white matter fibers belonging to the cortico-basal ganglia-thalamic loop. Furthermore, EP and IUGR have been related to altered brain network architecture in childhood, with reduced network global capacity, global efficiency and average nodal strength. In this study, we used a connectome analysis to characterize the structural brain networks of these children, with a special focus on their topological organization. On one hand, we confirm the reduced averaged network node degree and strength due to EP and IUGR. On the other, the decomposition of the brain networks in an optimal set of clusters remained substantially different among groups, talking in favor of a different network community structure. However, and despite the different community structure, the brain networks of these high-risk school-age children maintained the typical small-world, rich-club and modularity characteristics in all cases. Thus, our results suggest that brain reorganizes after EP and IUGR, prioritizing a tight modular structure, to maintain the small-world, rich-club and modularity characteristics. By themselves, both extreme prematurity and IUGR bear a similar risk for neurocognitive and behavioral impairment, and the here defined modular network alterations confirm similar structural changes both by IUGR and EP at school age compared to control. Interestingly, the combination of both conditions (IUGR + EP) does not result in a worse outcome. In such cases, the alteration in network topology appears mainly driven by the effect of extreme prematurity, suggesting that these brain network alterations present at school age have their origin in a common critical period, both for intrauterine and extrauterine adverse conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761723 | PMC |
http://dx.doi.org/10.1016/j.nicl.2016.02.001 | DOI Listing |
Chaos
January 2025
Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
Generally, epilepsy is considered as abnormally enhanced neuronal excitability and synchronization. So far, previous studies on the synchronization of epileptic brain networks mainly focused on the synchronization strength, but the synchronization stability has not yet been explored as deserved. In this paper, we propose a novel idea to construct a hypergraph brain network (HGBN) based on phase synchronization.
View Article and Find Full Text PDFNeurourol Urodyn
January 2025
Department of Neurology, Hochzirl Hospital, Zirl, Austria.
Introduction: Neurogenic bladder dysfunction is a prevalent condition characterized by impaired bladder control resulting from neurological conditions, for example, spinal cord injury or traumatic brain injury (TBI). Detrusor overactivity is a typical symptom of central nervous system damage. A lesion affecting the pontine neural network typically results in loss of tonic inhibition exerted by the pontine micturition center and causes involuntary detrusor contractions.
View Article and Find Full Text PDFEur Heart J Imaging Methods Pract
January 2025
Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, Rome 00161, Italy.
Aims: Outcome in pulmonary arterial hypertension (PAH) is determined by right ventricular (RV) function adaptation to increased afterload. Echocardiography is easily available to assist bedside evaluation of the RV. However, no agreement exists about the feasibility and most relevant measurements.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.
View Article and Find Full Text PDFFront Child Adolesc Psychiatry
November 2024
Department of Psychology, Palo Alto University, Palo Alto, CA, United States.
Introduction: Autism Spectrum Disorder (ASD) is characterized by deficits in social cognition, self-referential processing, and restricted repetitive behaviors. Despite the established clinical symptoms and neurofunctional alterations in ASD, definitive biomarkers for ASD features during neurodevelopment remain unknown. In this study, we aimed to explore if activation in brain regions of the default mode network (DMN), specifically the medial prefrontal cortex (MPC), posterior cingulate cortex (PCC), superior temporal sulcus (STS), inferior frontal gyrus (IFG), angular gyrus (AG), and the temporoparietal junction (TPJ), during resting-state functional magnetic resonance imaging (rs-fMRI) is associated with possible phenotypic features of autism (PPFA) in a large, diverse youth cohort.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!