Coral photophysiology has been studied intensively from the colony scale down to the scale of single fluorescent pigment granules as light is one of the key determinants for coral health. We studied the photophysiology of the oral and aboral symbiont band of scleractinian coral Montastrea curta to investigate if different acclimation to light exist in hospite on a polyp scale. By combined use of electrochemical and fiber-optic microsensors for O2, scalar irradiance and variable chlorophyll fluorescence, we could characterize the physical and chemical microenvironment experienced by the symbionts and, for the first time, estimate effective quantum yields of PSII photochemistry and rates of electron transport at the position of the zooxanthellae corrected for the in-tissue gradient of scalar irradiance. The oral- and aboral Symbiodinium layers received ∼71% and ∼33% of surface scalar irradiance, respectively, and the two symbiont layers experience considerable differences in light exposure. Rates of gross photosynthesis did not differ markedly between the oral- and aboral layer and curves of PSII electron transport rates corrected for scalar irradiance in hospite, showed that the light use efficiency under sub-saturating light conditions were similar between the two layers. However, the aboral Symbiodinium band did not experience photosynthetic saturation, even at the highest investigated irradiance where the oral layer was clearly saturated. We thus found a different light acclimation response for the oral and aboral symbiont bands in hospite, and discuss whether such response could be shaped by spectral shifts caused by tissue gradients of scalar irradiance. Based on our experimental finding, combined with previous knowledge, we present a conceptual model on the photophysiology of Symbiodinium residing inside living coral tissue under natural gradients of light and chemical parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768073 | PMC |
http://dx.doi.org/10.3389/fmicb.2016.00230 | DOI Listing |
PLoS One
October 2024
Electrical Engineering Department, Faculty of Energy Engineering, Aswan University, Aswan, Egypt.
Diesel engines (DEs) commonly power pumps used in agricultural and grassland irrigation. However, relying on unpredictable and costly fuel sources for DEs pose's challenges related to availability, reliability, maintenance, and lifespan. Addressing these environmental concerns, this study introduces an emulation approach for photovoltaic (PV) water pumping (WP) systems.
View Article and Find Full Text PDFJ Appl Clin Med Phys
October 2024
Medical Physics Unit, McGill University, Montreal, Canada.
This investigation aimed to optimize gradient positioning for radiochromic film calibration to facilitate a uniform distribution of calibration points. The study investigated the influence of various parameters on gradient dose profiles generated by a physical wedge, assessing their impact on the field's dose dynamic range, a scalar quantity representing the span of absorbed doses. Numerical parameterization of the physical wedge profile was used to visualize and quantify the impact of field size, depth, and energy on the dynamic range of dose gradients.
View Article and Find Full Text PDFPhys Rev Lett
June 2024
CERN, Geneva, Switzerland.
A combination of searches for a new resonance decaying into a Higgs boson pair is presented, using up to 139 fb^{-1} of pp collision data at sqrt[s]=13 TeV recorded with the ATLAS detector at the LHC. The combination includes searches performed in three decay channels: bb[over ¯]bb[over ¯], bb[over ¯]τ^{+}τ^{-}, and bb[over ¯]γγ. No excess above the expected Standard Model background is observed and upper limits are set at the 95% confidence level on the production cross section of Higgs boson pairs originating from the decay of a narrow scalar resonance with mass in the range 251 GeV-5 TeV.
View Article and Find Full Text PDFThe unequal aperture off-axis optical integrator design method is proposed to improve the irradiation uniformity of solar simulators and solve the problem of limited uniformity of optical integrator due to aberrations and uneven distribution of incident radiation. Firstly, the unequal aperture off-axis optical integrator structure is designed based on the scalar diffraction theory to analyze the factors affecting the optical homogenization ability of the optical integrator. Then, the relationship between sub-eye lens aperture and arrangement is explored in combination with Lagrange invariance principle and semi-definite programming theory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!