Neuraminidases (sialidases) are enzymes that hydrolytically remove sialic acid from sialylated proteins and lipids. Neuraminidases are encoded by a range of human pathogens, including bacteria, viruses, fungi, and protozoa. Many pathogen neuraminidases are virulence factors, indicating that desialylation of host glycoconjugates can be a critical step in infection. Specifically, desialylation of host cell surface glycoproteins can enable these molecules to function as pathogen receptors or can alter signaling through the plasma membrane. Despite these critical effects, no unbiased approaches exist to identify glycoprotein substrates of neuraminidases. Here, we combine previously reported glycoproteomics methods with quantitative proteomics analysis to identify glycoproteins whose sialylation changes in response to neuraminidase treatment. The two glycoproteomics methods-periodate oxidation and aniline-catalyzed oxime ligation (PAL) and galactose oxidase and aniline-catalyzed oxime ligation (GAL)-rely on chemoselective labeling of sialylated and nonsialylated glycoproteins, respectively. We demonstrated the utility of the combined approaches by identifying substrates of two pneumococcal neuraminidases in a human cell line that models the blood-brain barrier. The methods deliver complementary lists of neuraminidase substrates, with GAL identifying a larger number of substrates than PAL (77 versus 17). Putative neuraminidase substrates were confirmed by other methods, establishing the validity of the approach. Among the identified substrates were host glycoproteins known to function in bacteria adherence and infection. Functional assays suggest that multiple desialylated cell surface glycoproteins may act together as pneumococcus receptors. Overall, this method will provide a powerful approach to identify glycoproteins that are desialylated by both purified neuraminidases and intact pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838540 | PMC |
http://dx.doi.org/10.1021/acs.bioconjchem.6b00050 | DOI Listing |
Zhongguo Zhong Yao Za Zhi
December 2024
Institute of International Standardization for Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine Shanghai 201203, China Shanghai Academy of International Standardization for Traditional Chinese Medicine Shanghai 201203, China.
This study aims to establish a quality grading standard that combines the conventional quality evaluation based on morphological characteristics of traditional Chinese medicine with the modern quality evaluation. Based on the existing standards and market circulation of Isatidis Radix, the diameter and color of Isatidis Radix decoction pieces were selected as the appearance traits for preliminary grading. The effects of internal quality indexes such as moisture, total ash, acid-insoluble ash, ethanol-soluble extractives, and 9 water-soluble components on different grades of decoction pieces were comprehensively compared, and the key grading indexes were determined by t-test.
View Article and Find Full Text PDFJ Infect Chemother
December 2024
Japan Physicians Association, Tokyo, Japan; Ricerca Clinica Co., Fukuoka, Japan.
Introduction: To assess the susceptibility of epidemic influenza viruses to the four most used neuraminidase inhibitors (NAIs) during the 2023-24 influenza season in Japan, we measured the 50 % inhibitory concentration (IC) of oseltamivir, peramivir, zanamivir, and laninamivir in virus isolates from the sample of 100 patients.
Methods: Viral isolation was done using specimens obtained before and after treatment, with the type/subtype determined by RT-PCR using type- and subtype-specific primers. IC values were determined by a neuraminidase inhibition assay using a fluorescent substrate.
bioRxiv
December 2024
Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
Influenza has been responsible for multiple global pandemics and seasonal epidemics and claimed millions of lives. The imminent threat of a panzootic outbreak of avian influenza H5N1 virus underscores the urgent need for pandemic preparedness and effective countermeasures, including monoclonal antibodies (mAbs). Here, we characterize human mAbs that target the highly conserved catalytic site of viral neuraminidase (NA), termed NCS mAbs, and the molecular basis of their broad specificity.
View Article and Find Full Text PDFMicrob Cell Fact
November 2024
Virology Department, Pasteur Institute of Iran, Tehran, Iran.
Background: To discover effective drugs for treating Influenza (a disease with high annual mortality), large amounts of recombinant neuraminidase (NA) with suitable catalytic activity are needed. However, the functional activity of the full-length form of this enzyme in the bacterial host (as producing cells with a low cost) in a soluble form is limited. Thus, in the present study, a truncated form of the neuraminidase (derived from California H1N1 influenza strain) was designed, then biosynthesized in Escherichia coli BL21 (DE3), Shuffle T7, and SILEX systems.
View Article and Find Full Text PDFBioorg Chem
December 2024
Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, Sevilla 41092, Spain. Electronic address:
RgNanH is an intramolecular trans-sialidase expressed by the human gut symbiont Ruminococcus gnavus, to utilise intestinal sialylated mucin glycan epitopes. Its catalytic domain, belonging to glycoside hydrolase GH33 family, cleaves off terminal sialic acid residues from mucins, releasing 2,7-anhydro-Neu5Ac which is then used as metabolic substrate by R. gnavus to proliferate in the mucosal environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!