The roles of autophagy in vascular smooth muscle cells.

Int J Cardiol

Dept. of Biochemistry & Molecular Biology, Faculty of Medicine, Univ. of Calgary, Calgary, Alberta, Canada; Dept. of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China. Electronic address:

Published: May 2016

Autophagy, which is an evolutionarily conserved mechanism and links to several cellular pathways, impacts vascular smooth muscle cells (VSMCs) survival and function. Activation of autophagy by intercellular and/or extracellular stimuli has protective effects on VSMCs against cell death, while on the contrary, overloading autophagy has been recognized as a deleterious process by excessive self-digestion. Alterations in autophagy has been documented in VSMC in response to various stimuli, resulting in modulation of VSMC functions, including proliferation, migration, matrix secretion, contraction/relaxation, and differentiation. Each of these changes in VSMC functions plays a critical role in the development of vascular diseases. Importantly, emerging evidence demonstrates that autophagy deficiency in VSMCs would contribute to atherosclerosis and restenosis, shedding novel light on therapeutic target of the vascular disorders. Herein, this review summarizes the recent progress associated with the roles of autophagy in VSMC and offers the perspectives to several challenges and future directions for further studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2016.02.128DOI Listing

Publication Analysis

Top Keywords

roles autophagy
8
vascular smooth
8
smooth muscle
8
muscle cells
8
vsmc functions
8
autophagy
6
vascular
4
autophagy vascular
4
cells autophagy
4
autophagy evolutionarily
4

Similar Publications

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Drug resistance is a common challenge in clinical tumor treatment. A reduction in drug sensitivity of tumor cells is often accompanied by an increase in autophagy levels, leading to autophagy-related resistance. The effectiveness of combining chemotherapy drugs with autophagy inducers/inhibitors has been widely confirmed, but the mechanisms are still unclear.

View Article and Find Full Text PDF

Background: Low-grade glioma (LGG) is a primary brain tumor with relatively low malignancy. NCOA4 is a key regulator of ferritinophagy-related processes and is involved in the occurrence and development of many cancers. However, the role of NCOA4 in LGG remains poorly understood.

View Article and Find Full Text PDF

mtSTAT3 suppresses rheumatoid arthritis by regulating Th17 and synovial fibroblast inflammatory cell death with IL-17-mediated autophagy dysfunction.

Exp Mol Med

January 2025

Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Th17 cells are activated by STAT3 factors in the nucleus, and these factors are correlated with the pathologic progression of rheumatoid arthritis (RA). Recent studies have demonstrated the presence of STAT3 in mitochondria, but its function is unclear. We investigated the novel role of mitochondrial STAT3 (mitoSTAT3) in Th17 cells and fibroblast-like synoviocytes (FLSs) and analyzed the correlation of mitoSTAT3 with RA.

View Article and Find Full Text PDF

Scutellarin inhibits pyroptosis via selective autophagy degradation of p30/GSDMD and suppression of ASC oligomerization.

Pharmacol Res

January 2025

MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou 310058, China; Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Most of the pyroptosis inhibitors targeted Gasdermin D (GSDMD) are functioning by restraining GSDMD-N (p30) oligomerization. For the first time, this work discovered a pyroptosis inhibitor taking effect by degrading p30 and GSDMD. As the principal bioactive constituent in Erigeron breviscapus, scutellarin (SCU) assumes a pivotal role in the realm of anti-inflammatory processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!