Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An orchestrated interplay of adaptor and signaling proteins at mechano-sensitive sites is essential to maintain cardiac contractility and when defective leads to heart failure. We recently showed that Integrin-linked Kinase (ILK), ß-Parvin and PINCH form the IPP-complex to grant tuned Protein Kinase B (PKB) signaling in the heart. Loss of one of the IPP-complex components results in destabilization of the whole complex, defective PKB signaling and finally heart failure. Two components of IPP, ILK and ß-Parvin directly bind to Paxillin; however, the impact of this direct interaction on the maintenance of heart function is not known yet. Here, we show that targeted gene inactivation of Paxillin results in progressive decrease of cardiac contractility and heart failure in zebrafish without affecting IPP-complex stability and PKB phosphorylation. However, we found that Paxillin deficiency leads to the destabilization of its known binding partner Focal Adhesion Kinase (FAK) and vice versa resulting in degradation of Vinculin and thereby heart failure. Our findings highlight an essential role of Paxillin and FAK in controlling cardiac contractility via the recruitment of Vinculin to mechano-sensitive sites in cardiomyocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4782988 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0150323 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!