As a well-studied transition-metal semiconductor material, MoOx has a wider band gap than molybdenum disulfide (MoS2), and its property varies dramatically for the existence of several different allotropes and suboxide phases of molybdenum oxides (MoOx, x < 3). In this manuscript, a one-pot method possessing the advantages of one pot, easily prepared, rapid, and environmentally friendly, has been developed for facile synthesis of highly photoluminescent MoOx quantum dots (MoOx QDs), in which commercial molybdenum disulfide (MoS2) powder and hydrogen peroxide (H2O2) are employed as the precursor and oxidant, respectively. The obtained MoOx QDs can be further utilized as an efficient photoluminescent probe, and a new turn-off sensor is developed for 2,4,6-trinitrotoluene (TNT) determination based on the fact that the photoluminescence of MoOx QDs can be quenched by the Meisenheimer complexes formed in the strong alkali solution through the inner filter effect (IFE). Under the optimal conditions, the decreased photoluminescence of MoOx QDs shows a good linear relationship to the concentration of TNT ranging from 0.5 to 240.0 μM, and the limit of detection was 0.12 μM (3σ/k). With the present turn-off sensor, TNT in river water samples can be rapidly and selectively detected without tedious sample pretreatment processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b11316DOI Listing

Publication Analysis

Top Keywords

moox qds
16
highly photoluminescent
8
quantum dots
8
molybdenum disulfide
8
disulfide mos2
8
turn-off sensor
8
photoluminescence moox
8
moox
7
molybdenum
4
photoluminescent molybdenum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!