Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The anti-inflammatory properties of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and non-steroidal anti-inflammatory drugs overlap in many ways. The aim of this study was to examine the individual and synergetic anti-inflammatory effects of celecoxib, EPA and DHA in RAW-264.7 cell line.
Methodology: The cells were exposed to EPA, DHA, celecoxib, rosiglitazone, GW9662 alone or their combination, and stimulated with 5 μg/mL lipopolysaccharide (LPS). Nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and prostaglandin-E2 (PGE2) levels were estimated in the medium using enzyme-linked immunosorbent assays. The cyclooxygenase-2 (COX-2) and inducible Nitric Oxide Synthase (iNOS) expression were analyzed in the cell lysate by immunoblotting. Peroxisome proliferator-activated receptor γ (PPARγ) and nuclear factor-κB (NF-κB) transcription factor activation assays were performed in the nuclear extract.
Results: Combined treatment of DHA (50 μM) and celecoxib (20 μM) significantly inhibited LPS induced synthesis of NO, TNF-α, IL-6 and PGE2 levels in the cells, compared to the individual treatments. In addition, DHA and celecoxib diminished the COX-2 and iNOS expression in the cells. This was associated with increased PPARγ activity, supressed NF-κB activity in the nucleus. We determined whether GW9662, a specific PPARγ inhibitor, could abolish the anti-inflammatory effect of DHA and celecoxib. GW9662 has abolished the DHA and celecoxib induced PPARγ activation, but did not alter the NF-κB mediated anti-inflammatory effects induced by celecoxib and DHA. Interestingly, EPA did not exhibit any inhibitory effect on these parameters.
Conclusion: Our results suggest that DHA and celecoxib exhibit anti-inflammatory effect through inhibition of NF-κB, independent of PPARγ. Co-administration of celecoxib and DHA would be promising approach for the treatment of inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/08923973.2016.1147578 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!