In general, the seminiferous tubule basement membrane (STBM), comprising laminin, collagen IV, perlecan, and entactin, plays an important role in self-renewal and spermatogenesis of spermatogonial stem cells (SSCs) in the testis. However, among the diverse extracellular matrix (ECM) proteins constituting the STBM, the mechanism by which each regulates SSC fate has yet to be revealed. Accordingly, we investigated the effects of various ECM proteins on the maintenance of the undifferentiated state of SSCs in pigs. First, an extracellular signaling-free culture system was optimized, and alkaline phosphatase (AP) activity and transcriptional regulation of SSC-specific genes were analyzed in porcine SSCs (pSSCs) cultured for 1, 3, and 5 days on non-, laminin- and collagen IV-coated Petri dishes in the optimized culture system. The microenvironment consisting of glial cell-derived neurotrophic factor (GDNF)-supplemented mouse embryonic stem cell culture medium (mESCCM) (GDNF-mESCCM) demonstrated the highest efficiency in the maintenance of AP activity. Moreover, under the established extracellular signaling-free microenvironment, effective maintenance of AP activity and SSC-specific gene expression was detected in pSSCs experiencing laminin-derived signaling. From these results, we believe that laminin can serve as an extracellular niche factor required for the in vitro maintenance of undifferentiated pSSCs in the establishment of the pSSC culture system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003964PMC
http://dx.doi.org/10.5713/ajas.15.0856DOI Listing

Publication Analysis

Top Keywords

maintenance undifferentiated
12
culture system
12
extracellular matrix
8
undifferentiated state
8
spermatogonial stem
8
stem cells
8
ecm proteins
8
extracellular signaling-free
8
maintenance activity
8
maintenance
5

Similar Publications

Background: Undifferentiated embryonic cell transcription factor 1 (UTF1) is predominantly expressed in pluripotent stem cells and plays a vital role in embryonic development and pluripotency maintenance. Despite its established importance in murine models, the role of UTF1 on human induced pluripotent stem cells (iPSCs) has not been comprehensively studied.

Methods: This study utilized CRISPR/Cas9 gene editing to create UTF1 knockout in human fibroblasts and iPSCs.

View Article and Find Full Text PDF
Article Synopsis
  • Cryptorchidism is a common congenital condition in newborn males where one or both testes fail to descend into the scrotum, leading to potential infertility due to azoospermia.
  • Research using a mouse model of surgically induced cryptorchidism revealed changes in the epigenetic markers H3K27me3 and H3K9me3 in spermatogonial cells, with a specific loss of H3K27me3 linked to gene activation related to development and apoptosis.
  • The study indicates that elevated temperatures may enhance the activity of enzymes that demethylate H3K27, contributing to mRNA dysregulation and potentially impacting spermatogonial function.
View Article and Find Full Text PDF

Background: Rhabdomyosarcoma and other soft tissue sarcomas (STS) with high-risk features are still associated with an unsatisfactory outcome. We evaluated the efficacy of oral maintenance therapy added at the end of standard therapy in patients with high-risk rhabdomyosarcoma and STS.

Methods: CWS-2007-HR was a multicentre, open-label, randomised controlled, phase 3 trial done at 87 centers in 5 countries.

View Article and Find Full Text PDF

Spermatogonial stem cells (SSCs) sustain and modulate spermatogenesis through intricate signaling pathways and transcription factors. Promyelocytic leukemia zinc-finger (, also known as ) has been identified as a critical transcription factor influencing various signaling and differentiation pathways. plays a pivotal role in regulating the differentiation properties of SSCs and is essential for the proper maintenance of spermatogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatocellular carcinoma (HCC) has metabolic abnormalities that help cancer cells grow and resist treatment, making it vital to study new metabolic factors linked to these issues for better understanding and potential therapy advancements.
  • An analysis of cancer data revealed that a particular gene module correlates with advanced HCC disease and the maintenance of cancer stem cells, leading to the identification of 361 deregulated genes, with diacylglycerol kinase eta (DGKH) being a key player in promoting aggressive cancer traits.
  • DGKH's elevated levels in tumors make patients less responsive to treatments, and its action involves enhancing mTOR signaling through phosphatidic acid production; targeting DGKH may improve treatment outcomes
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!