The mixolab, a rheological device developed recently, combines approved farinograph and amylograph test procedures. Analysing wheat flour composites with hemp, teff, or chia in terms of all three mentioned rheological methods, correspondence of farinograph, and amylograph versus mixolab features was examined by principal component analysis. The first two principal components, PC1 and PC2, explained 75% of data scatter and allowed a satisfying confirmation of presumed relationships between farinograph or amylograph and mixolab parameters. Dough development time and stability were associated with gluten strength (C1 torque point) and also dough softening (mixing tolerance index) had a link to protein weakening (C1-C2 difference). In the second mentioned case, amylograph viscosity maximum and amylase activity (C3-C4) closeness was verified. Starch and starch gel properties during mixing (C3, C3-C2, and C4) affect dough viscosity (C1) and rheological behaviour (dough development time and stability). Another important finding is unequivocal distinguishing of the composite subsets (of hemp, teff, and chia ones) by the used rheological methods and statistical treatment of multivariable data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4756576 | PMC |
http://dx.doi.org/10.1155/2013/968020 | DOI Listing |
Plants (Basel)
July 2024
Departamento de Biología, Campus de Cantoblanco, Universidad Autónoma de Madrid, C/Darwin 2, 28049 Madrid, Spain.
In the dynamic landscape of agriculture and food science, incorporating emergent crops appears as a pioneering solution for diversifying agriculture, unlocking possibilities for sustainable cultivation and nutritional bolstering food security, and creating economic prospects amid evolving environmental and market conditions with positive impacts on human health. This review explores the potential of utilizing emergent crops in Mediterranean environments under current climate scenarios, emphasizing the manifold benefits of agricultural and food system diversification and assessing the impact of environmental factors on their quality and consumer health. Through a deep exploration of the resilience, nutritional value, and health impacts of neglected and underutilized species (NUS) such as quinoa, amaranth, chia, moringa, buckwheat, millet, teff, hemp, or desert truffles, their capacity to thrive in the changing Mediterranean climate is highlighted, offering novel opportunities for agriculture and functional food development.
View Article and Find Full Text PDFInt J Mol Sci
October 2023
Center for Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy.
Methods Mol Biol
March 2022
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
Gramene is an integrated bioinformatics resource for accessing, visualizing, and comparing plant genomes and biological pathways. Originally targeting grasses, Gramene has grown to host annotations for over 90 plant genomes including agronomically important cereals (e.g.
View Article and Find Full Text PDFFoods
June 2021
IPOA Research Group, Agro-Food Technology Department, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, 03312 Alicante, Spain.
Gelled emulsion (GE) systems are one of the novel proposals for the reformulation of meat products with healthier profiles. The aims of this research were (i) to develop gelled emulsions using pseudocereal flours (amaranth, buckwheat, teff, and quinoa) and vegetable oils (chia oil, hemp oil, and their combination), (ii) to determine their chemical composition, physicochemical properties, and lipid stability, and (iii) to evaluate their stability during frozen storage. The results showed that GEs are technologically viable except for the sample elaborated with teff flour and a mix of oils.
View Article and Find Full Text PDFInt J Food Sci
March 2016
Department of Carbohydrates and Cereals, Institute of Chemical Technology in Prague, Technická 5, 166 28 Prague 6, Czech Republic.
The mixolab, a rheological device developed recently, combines approved farinograph and amylograph test procedures. Analysing wheat flour composites with hemp, teff, or chia in terms of all three mentioned rheological methods, correspondence of farinograph, and amylograph versus mixolab features was examined by principal component analysis. The first two principal components, PC1 and PC2, explained 75% of data scatter and allowed a satisfying confirmation of presumed relationships between farinograph or amylograph and mixolab parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!