Cercozoa are abundant free-living soil protozoa and quantitatively important in soil food webs; yet, targeted high-throughput sequencing (HTS) has not yet been applied to this group. Here we describe the development of a targeted assay to explore Cercozoa using HTS, and we apply this assay to measure Cercozoan community response to drought in a Danish climate manipulation experiment (two sites exposed to artificial drought, two unexposed). Based on a comparison of the hypervariable regions of the 18S ribosomal DNA of 193 named Cercozoa, we concluded that the V4 region is the most suitable for group-specific diversity analysis. We then designed a set of highly specific primers (encompassing ~270 bp) for 454 sequencing. The primers captured all major cercozoan groups; and >95% of the obtained sequences were from Cercozoa. From 443 350 high-quality short reads (>300 bp), we recovered 1585 operational taxonomic units defined by >95% V4 sequence similarity. Taxonomic annotation by phylogeny enabled us to assign >95% of our reads to order level and ~85% to genus level despite the presence of a large, hitherto unknown diversity. Over 40% of the annotated sequences were assigned to Glissomonad genera, whereas the most common individually named genus was the euglyphid Trinema. Cercozoan diversity was largely resilient to drought, although we observed a community composition shift towards fewer testate amoebae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030685 | PMC |
http://dx.doi.org/10.1038/ismej.2016.31 | DOI Listing |
An Acad Bras Cienc
January 2025
Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Microbiologia, Av. Antônio Carlos, 6627, Pampulha, 31270-000 Belo Horizonte, MG, Brazil.
Polar marine macroalgae thrive in extreme conditions, often displaying geographic isolation and high degree of endemism. The "phycosphere" refers to the zone around the algae inhabited by microrganisms. Our study used DNA metabarcoding to survey the eukaryotic communities associated with seven seaweed species obtained at King George Island (South Shetland Islands, maritime Antarctic), including two Rhodophyta, two Chlorophyta and three Phaeophyceae.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Environment, Beijing Normal University, Beijing 100080, China.
Unraveling how microeukaryotic generalists and specialists assemble and coexist under environmental stress is central to our understanding of the mechanisms maintaining diversity. Here, we explored the biogeographical distributions of microeukaryotic generalists and specialists in lake surface sediments along a salinity gradient on the Qinghai-Tibet Plateau. We found that relative abundances of Chlorophyta (28.
View Article and Find Full Text PDFJ Eukaryot Microbiol
November 2024
Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany.
Thecate amoebae play important roles in terrestrial and aquatic ecosystems. This study introduces a novel thecofilosean amoeba from Arctic and Antarctic sea sediments. Phylogenetic analysis based on the 18S rDNA sequence places it in the family Chlamydophryidae (order Tectofilosida, class Thecofilosea).
View Article and Find Full Text PDFPlant J
January 2025
Institute of Plant Genetics Polish Academy of Sciences, ul. Strzeszyńska 34, Poznań, 60-479, Poland.
Plasmodiophora brassicae, a soil-borne biotroph, establishes galls as strong physiological sinks on Brassicaceae plants including Brassica napus and Arabidopsis thaliana. We compare transcriptional profiles of phloem dissected from leaf petioles and hypocotyls of healthy and infected B. napus plants.
View Article and Find Full Text PDFJ Eukaryot Microbiol
November 2024
Division for Biology of Algae and Protozoa, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.
Protists show diverse lifestyles and fulfill important ecological roles as primary producers, predators, symbionts, and parasites. The degradation of dead microbial biomass, instead, is mainly attributed to bacteria and fungi, while necrophagy by protists remains poorly recognized. Here, we assessed the food range specificity and feeding behavior of the algivorous flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa) with a large-scale feeding experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!