The cellular compartmentalization of metabolic processes is an important feature in plants where the same pathways could be simultaneously active in different compartments. Plant glycolysis occurs in the cytosol and plastids of green and non-green cells in which the requirements of energy and precursors may be completely different. Because of this, the relevance of plastidial glycolysis could be very different depending on the cell type. In the associated study, we investigated the function of plastidial glycolysis in photosynthetic and heterotrophic cells by specifically driving the expression of plastidial glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in a glyceraldehyde-3-phosphate dehydrogenase double mutant background (gapcp1gapcp2). We showed that GAPCp is not functionally significant in photosynthetic cells, while it plays a crucial function in heterotrophic cells. We also showed that (i) GAPCp activity expression in root tips is necessary for primary root growth, (ii) its expression in heterotrophic cells of aerial parts and roots is necessary for plant growth and development, and (iii) GAPCp is an important metabolic connector of carbon and nitrogen metabolism through the phosphorylated pathway of serine biosynthesis (PPSB). We discuss here the role that this pathway could play in the control of plant growth and development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883961PMC
http://dx.doi.org/10.1080/15592324.2015.1128614DOI Listing

Publication Analysis

Top Keywords

heterotrophic cells
16
plastidial glycolysis
12
glyceraldehyde-3-phosphate dehydrogenase
12
glycolysis photosynthetic
8
photosynthetic heterotrophic
8
plant growth
8
growth development
8
cells
6
specific role
4
plastidial
4

Similar Publications

Environmental interactions between protists and bacterial communities in hydrocarbon degradation.

Protist

December 2024

C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat 394 350, Gujarat, India. Electronic address:

Reclamation of petroleum-polluted environments is a key issue for today and in the future, as our reliance on oil will persist for decades. An eco-friendly solution is to use microbes that play a role in petroleum-hydrocarbon degradation. However, as hydrocarbon degradation involves a multi-step process involving different functional groups, focusing only on finding efficient bacterial species will not be the complete solution.

View Article and Find Full Text PDF

The metabolism of phytoplankton cells is synchronized with the diel light cycle. Likewise, associated heterotrophic bacteria adjust their diel expression of transporter- and catabolism-related genes to target the dissolved organic matter released by the phytoplankton cell. Dissolved combined carbohydrates (DCCHO) and dissolved amino acids (DAA) are major phytoplankton products and bacterial substrates.

View Article and Find Full Text PDF

Revealing mechanisms of high protein accumulation in Graesiella emersonii WBG-1 under heterotrophic condition.

Bioresour Technol

December 2024

CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China. Electronic address:

Low protein content under heterotrophic conditions limits the industrial production of proteins by microalgae. In this study, Graesiella emersonii WBG-1 efficiently synthesized and accumulated proteins (64.03%) under heterotrophic conditions, distinguishing it from other microalgae.

View Article and Find Full Text PDF

Eukaryotic nuclear genomes often encode distinct sets of translation machinery for function in the cytosol vs. organelles (mitochondria and plastids). This raises questions about why multiple translation systems are maintained even though they are capable of comparable functions and whether they evolve differently depending on the compartment where they operate.

View Article and Find Full Text PDF

Genetic analyses reveal wildfire particulates as environmental pollutants rather than nutrient sources for corals.

J Hazard Mater

December 2024

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China. Electronic address:

Heterotrophic nutrients are crucial for coral growth and recovery from bleaching events. Although wildfire emissions are a potential source of these nutrients, their impact on corals was minimally investigated. In this microcosm experiment, Acropora formosa corals exhibited rapid tissue detachment upon exposure to wildfire fine particulate matter (PM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!