Adult-type hematopoietic stem and progenitor cells are formed during ontogeny from a specialized subset of endothelium, termed the hemogenic endothelium, via an endothelial-to-hematopoietic transition (EHT) that occurs in the embryonic aorta and the associated arteries. Despite efforts to generate models, little is known about the mechanisms that drive endothelial cells to the hemogenic fate and about the subsequent molecular control of the EHT. Here, we have designed a stromal line-free controlled culture system utilizing the embryonic pre-somitic mesoderm to obtain large numbers of endothelial cells that subsequently commit into hemogenic endothelium before undergoing EHT. Monitoring the culture for up to 12 days using key molecular markers reveals stepwise commitment into the blood-forming system that is reminiscent of the cellular and molecular changes occurring during hematopoietic development at the level of the aorta. Long-term single-cell imaging allows tracking of the EHT of newly formed blood cells from the layer of hemogenic endothelial cells. By modifying the culture conditions, it is also possible to modulate the endothelial cell commitment or the EHT or to produce smooth muscle cells at the expense of endothelial cells, demonstrating the versatility of the cell culture system. This method will improve our understanding of the precise cellular changes associated with hemogenic endothelium commitment and EHT and, by unfolding these earliest steps of the hematopoietic program, will pave the way for future ex vivo production of blood cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.126714 | DOI Listing |
Front Cell Dev Biol
December 2024
Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan.
Most blood cells derive from hematopoietic stem cells (HSCs), originating from endothelial cells. The induction of HSCs from endothelial cells occurs during mid-gestation, and research has revealed multiple steps in this induction process. Hemogenic endothelial cells emerge within the endothelium, transition to hematopoietic cells (pre-HSCs), and subsequently mature into functional HSCs.
View Article and Find Full Text PDFCells
November 2024
Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
During mouse development, hematopoietic cells first form in the extraembryonic tissue yolk sac. Hematopoietic stem cells (HSCs), which retain their ability to differentiate into hematopoietic cells for a long time, form intra-aortic hematopoietic cell clusters (IAHCs) in the dorsal aorta at midgestation. These IAHCs emerge from the hemogenic endothelium, which is the common progenitor of hematopoietic cells and endothelial cells.
View Article and Find Full Text PDFDevelopment
November 2024
Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
Hematopoietic stem cells (HSCs) sustain life-long hematopoiesis and emerge during mid-gestation from hemogenic endothelial progenitors via an endothelial-to-hematopoietic transition (EHT). The full scope of molecular mechanisms governing this process remains unclear. The NR4A subfamily of orphan nuclear receptors act as tumor suppressors in myeloid leukemogenesis and have never been implicated in HSC specification.
View Article and Find Full Text PDFStem Cell Reports
December 2024
Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan. Electronic address:
Hematopoietic stem cells (HSCs) develop from hemogenic endothelial cells (HECs) during mouse embryogenesis. Understanding the signaling molecules required for HSC development is crucial for the in vitro derivation of HSCs. We previously induced HSCs from embryonic HECs, isolated at embryonic day 10.
View Article and Find Full Text PDFFront Mol Biosci
October 2024
Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
Mammalian hematopoietic stem cells (HSCs) emerge from the hemogenic endothelium in the major embryonic arteries. HSCs undergo a complex journey first migrating to the fetal liver (FL) and from there to the fetal bone marrow (FBM), where they mostly remain during adult life. In this process, a pool of adult HSCs is produced, which sustains lifelong hematopoiesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!