Objective: Vitamin A is a redox-active molecule and its inadvertent utilisation as a preventive therapy against ageing or neurodegeneration has become a harmful habit among humans at different ages. Mitochondrial dysfunction and redox impairment may be induced by vitamin A supplementation experimentally. Nonetheless, it is still not clear by which mechanisms vitamin A elicits such effects. Then, we performed this investigation to analyse whether mitochondria isolated from frontal cortex and hippocampus of vitamin A-treated rats are more sensitive to a challenge with amyloid-β (Aβ) peptides 1-40 or 1-42.
Methods: Adult Wistar rats received vitamin A at 1000-9000 IU/kg/day orally for 28 days. Then, mitochondria were isolated and the challenge with Aβ peptides 1-40 or 1-42 (at 0.2 or 0.1 μM, respectively) for 10 min was carried out before mitochondrial electron transfer chain enzyme activity, superoxide anion radical (O2 -•) production and 3-nitrotyrosine content quantification.
Results: Mitochondria obtained from vitamin A-treated rats are more sensitive to Aβ peptides 1-40 or 1-42 than mitochondria isolated from the control group, as decreased mitochondrial complex enzyme activity and increased O2 -• production and 3-nitrotyrosine content were observed in incubated mitochondria isolated from vitamin A-treated rats.
Conclusion: These data suggest that oral intake of vitamin A at clinical doses increases the susceptibility of mitochondria to a neurotoxic agent even at low concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1601-5215.2011.00588.x | DOI Listing |
Fish Physiol Biochem
January 2025
Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy.
Under low O, the heart of Carassius auratus (goldfish) shows an enhanced hemodynamics. This is observed in ex vivo cardiac preparations from animals acclimated to both normoxia and short-term (4 days) moderate hypoxia and perfused for 90 min with a hypoxic medium. Under short-term hypoxia, this is associated with a higher ventricular muscularity and an expanded mitochondrial compartment.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Thrombosis and Healthy Aging Research Center, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Medical Technology School, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile. Electronic address:
Platelet inhibition is a fundamental objective to prevent and treat thrombus formation. Platelet activation depends on mitochondrial function. This study aims to identify a new mitochondria-targeting compound with antiplatelet activity at safe concentrations in vitro.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Mitochondrial electron transport chain (ETC) function modulates macrophage biology; however, mechanisms underlying mitochondria ETC control of macrophage immune responses are not fully understood. Here, we report that mutant mice with mitochondria ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus (IAV) and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondria CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China.
Endophytic fungi live in healthy plant tissues and organs and are a major source of natural bioactive compounds. In this study, we found that an endophytic fungus, CEF642, isolated from the healthy cotton roots, suppressed by up to 53% after 15 days in a confrontation culture. Genome sequencing of CEF642 and mass spectrometry study of its metabolites were used to identify its primary antagonists.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
Mitochondria play a fundamental role in energy metabolism, particularly in high-energy-demand tissues such as skeletal muscle. Understanding the proteomic composition of mitochondria in these cells is crucial for elucidating the mechanisms underlying muscle physiology and pathology. However, effective isolation of mitochondria from primary human skeletal muscle cells has been challenging due to the complex cellular architecture and the propensity for contamination with other organelles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!