The aim of the present study was to evaluate a library of poly-L-lysine (PLL)-graft (g)-polyethylene glycol (PEG) copolymers for the ability to encapsulate effectively a model protein, bovine serum albumin (BSA), and to characterize the stability and protein function of the resulting nanoparticle. A library of nine grafted copolymers was produced by varying PLL molecular weight and PEG grafting ratio. Electrostatic self-assembly of the protein and the grafted copolymer drove encapsulation. The formation of protein/polymer nanoparticles with a core/shell structure was confirmed using PAGE, dynamic light scattering, and electron microscopy. Encapsulation of the BSA into nanoparticles was strongly dependent on the copolymer-to-protein mass ratio, PEG grafting ratio, and PLL molecular weight. A copolymer-to-protein mass ratio of 7:1 and higher was generally required for high levels of encapsulation, and under these conditions, no loss of protein activity was observed. Copolymer characteristics also influenced nanoparticle resistance to polyanions and protease degradation. The results indicate that a copolymer of 15-30 kDa PLL, with a PEG grafting ratio of 10:1, is most promising for protein delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2016.01.092DOI Listing

Publication Analysis

Top Keywords

peg grafting
12
grafting ratio
12
grafted copolymer
8
bovine serum
8
serum albumin
8
pll molecular
8
molecular weight
8
copolymer-to-protein mass
8
mass ratio
8
protein
5

Similar Publications

The Unfulfilled Potential of Synthetic and Biological Hydrogel Membranes in the Treatment of Abdominal Hernias.

Gels

November 2024

Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, H-1094 Budapest, Hungary.

Hydrogel membranes can offer a cutting-edge solution for abdominal hernia treatment. By combining favorable mechanical parameters, tissue integration, and the potential for targeted drug delivery, hydrogels are a promising alternative therapeutic option. The current review examines the application of hydrogel materials composed of synthetic and biological polymers, such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), gelatine, and silk fibroin, in the context of hernia repair.

View Article and Find Full Text PDF

Effect of PEGylation on the Adsorption and Binding Strength of Plasma Proteins to Nanoparticle Surfaces.

Mol Pharm

December 2024

Department of Chemical Engineering, Dankook University, Yongin-si 16890, South Korea.

The adsorption of plasma proteins (human serum albumin, immunoglobulin γ-1, apolipoproteins A-I and E-III) onto polystyrene surfaces grafted with polyethylene glycol (PEG) at different grafting densities is simulated using an all-atom PEG model validated by comparing the conformations of isolated PEG chains with previous simulation and theoretical values. At high PEG density, the grafted PEG chains extend like brushes, while at low density, they significantly adsorb to the surface due to electrostatic attraction between polystyrene amines and PEG oxygens, forming a PEG layer much thinner than its Flory radius. Free energy calculations show that PEGylation can either increase or decrease the binding strength between proteins and surfaces, to an extent dependent on PEG density and specific proteins involved, in agreement with experiments.

View Article and Find Full Text PDF

Bottlebrush polymers are complex architectures with densely grafted polymer side chains along polymeric backbones. The dense and conformationally extended chains in bottlebrush polymers give rise to unique properties, including low chain entanglement, low critical aggregation concentrations, and elastomeric properties in the bulk phase. Conjugated polymers have garnered attention as lightweight, processible, and flexible semi-conducting materials.

View Article and Find Full Text PDF

Co-delivery of retinoic acid and miRNA by functional Au nanoparticles for improved survival and CT imaging tracking of MSCs in pulmonary fibrosis therapy.

Asian J Pharm Sci

August 2024

Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.

Mesenchymal stem cells (MSCs) have emerged as promising candidates for idiopathic pulmonary fibrosis (IPF) therapy. Increasing the MSC survival rate and deepening the understanding of the behavior of transplanted MSCs are of great significance for improving the efficacy of MSC-based IPF treatment. Therefore, dual-functional Au-based nanoparticles (Au@PEG@PEI@TAT NPs, AuPPT) were fabricated by sequential modification of cationic polymer polyetherimide (PEI), polyethylene glycol (PEG), and transactivator of transcription (TAT) penetration peptide on AuNPs, to co-deliver retinoic acid (RA) and microRNA (miRNA) for simultaneously enhancing MSC survive and real-time imaging tracking of MSCs during IPF treatment.

View Article and Find Full Text PDF

A green, versatile, and facile strategy for anti-biofouling surface with ultra-high graft density polyethylene glycol.

J Nanobiotechnology

December 2024

Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou, 325001, Zhejiang, China.

Implantable catheters are susceptible to severe complications due to non-specific protein adhesion on their surfaces. Polyethylene glycol (PEG) coatings, the gold standard for resistance to non-specific protein adhesion, present a challenge in achieving high-density grafting, which significantly restricts their use as anti-biofouling coatings. Herein, we exploited the strong interaction between polyphenols (PCs) and polycations (K6-PEG) to graft PEG onto the surface of PC-Cu (A network of metal polyphenols composed of proanthocyanidins and metal copper ions, with expectation for the coating with excellent resistance to non-specific protein adhesion (PC-Cu@K6-PEG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!