The potential of a drug to cause certain organ toxicities is somehow implicitly contained in its full pharmacological profile, provided the drug reaches and accumulates at the various organs where the different interacting proteins in its profile, both targets and off-targets, are expressed. Under this assumption, a computational approach was implemented to obtain a projected anatomical profile of a drug from its in vitro pharmacological profile linked to protein expression data across 47 organs. It was observed that the anatomical profiles obtained when using only the known primary targets of the drugs reflected roughly the intended organ targets. However, when both known and predicted secondary pharmacology was considered, the projected anatomical profiles of the drugs were able to clearly highlight potential organ off-targets. Accordingly, when applied to sets of drugs known to cause cardiotoxicity and hepatotoxicity, the approach is able to identify heart and liver, respectively, as the organs where the proteins in the pharmacological profile of the corresponding drugs are specifically expressed. When applied to a set of drugs linked to a risk of Torsades de Pointes, heart is again the organ clearly standing out from the rest and a potential protein profile hazard is proposed. The approach can be used as a proxy indicator of potential in vivo organ toxicities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.5b00470 | DOI Listing |
Cardiovasc Toxicol
January 2025
RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
The rapid development and deployment of mRNA and non-mRNA COVID-19 vaccines have played a pivotal role in mitigating the global pandemic. Despite their success in reducing severe disease outcomes, emerging concerns about cardiovascular complications have raised questions regarding their safety. This systematic review critically evaluates the evidence on the cardiovascular effects of COVID-19 vaccines, assessing both their protective and adverse impacts, while considering the challenges posed by the limited availability of randomized controlled trial (RCT) data on these rare adverse events.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.
View Article and Find Full Text PDFClin Pharmacol Ther
January 2025
Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
Comparisons of maximum drug concentration (C) and total area under the concentration vs. time curve (AUC) may be inadequate for bioavailability (BA)/bioequivalence (BE) assessments in cases where the shape of the pharmacokinetic (PK) profile of a drug impacts the clinical performance. In such cases, partial area under the concentration vs.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Huadong Medical Institute of Biotechniques, Nanjing, China.
Acetaminophen induced acute liver injury (ALI) has a high incidence and is a serious medical problem, but there is a lack of effective treatment. The enterohepatic axis is one of the targets of recent attention due to its important role in liver diseases. Disulfiram (DSF) is a multitarget drug that has been proven to play a role in a variety of liver diseases and can affect intestinal flora, but whether it can alleviate ALI is not clear.
View Article and Find Full Text PDFHeadache
January 2025
Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Florence, Italy.
Antibodies targeting either the calcitonin gene-related peptide (CGRP), such as galcanezumab, fremanezumab, and eptinezumab, or the receptor (erenumab) have been approved for the prevention of episodic and chronic migraine. Although widely used and generally effective, a proportion of patients discontinue treatment due to lack of efficacy. In both randomized controlled trials and observational studies, all anti-CGRP monoclonal antibodies (mAbs) have consistently demonstrated comparable efficacy and tolerability, suggesting a pharmacological class effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!