Background And Aim: The purpose of this study was to investigate whether different camera lenses and dental specialties can affect the perception of smile esthetics.

Methods: In the first phase of this study, 40 female smile photographs (taken from dental students) were evaluated by six orthodontists, three specialists in restorative dentistry, and three prosthodontists to select the most beautiful smiles. The 20 students with the best smile ranks were again photographed in standard conditions, but this time with two different lenses: Regular and then macro lenses. Each referee evaluated the beauty of the smiles on a visual analog scale. The referees were blinded of the type of lenses, and the images were all coded. The data were analyzed using two-way analysis of variance (ANOVA), Kruskal-Wallis and Mann-Whitney U-tests (alpha = 0.05, alpha = 0.0167).

Results: The lenses led to similar scores of beauty perception (Mann-Whitney P = 0.8). There was no difference between subjective beauty perception of specialties (Kruskal-Wallis P = 0.6). Two-way ANOVA indicated no significant role for lenses (P = 0.1750), specialties (P = 0.7677), or their interaction (P = 0.7852).

Conclusion: The photographs taken by a regular lens and then digitally magnified can be as appealing as close-up photographs taken by a macro lens. Experts in different specialties (orthodontics, prosthodontics, and restorative dentistry) showed similar subjective judgments of smile beauty.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4759977PMC
http://dx.doi.org/10.4103/2278-0203.173426DOI Listing

Publication Analysis

Top Keywords

camera lenses
8
lenses dental
8
dental specialties
8
perception smile
8
restorative dentistry
8
beauty perception
8
lenses
7
specialties
5
smile
5
effects camera
4

Similar Publications

Perovskite-Based Smart Eyeglasses as Noncontact Human-Computer Interaction.

Adv Mater

January 2025

Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing, 100080, P. R. China.

More than 70% of human information comes from vision. The eye is one of the most attractive sensing sites to collect biological parameters. However, it is urgent to develop a cost-effective and easy-to-use approach to monitor eyeball information in a minimally invasive way instead of current smart contact lenses or camera-based eyeglasses.

View Article and Find Full Text PDF

Development of a Grape Cut Point Detection System Using Multi-Cameras for a Grape-Harvesting Robot.

Sensors (Basel)

December 2024

Laboratory of Bio-Mechatronics, Faculty of Engineering, Kitami Institute of Technology, Koentyo 165, Kitami Shi 090-8507, Hokkaido, Japan.

Harvesting grapes requires a large amount of manual labor. To reduce the labor force for the harvesting job, in this study, we developed a robot harvester for the vine grapes. In this paper, we proposed an algorithm that using multi-cameras, as well as artificial intelligence (AI) object detection methods, to detect the thin stem and decide the cut point.

View Article and Find Full Text PDF

Portable astronomical observation system based on large-aperture concentric-ring metalens.

Light Sci Appl

January 2025

Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtzplatz 1, Eggenstein-Leopoldshafen, 76344, Germany.

The core advantage of metalenses over traditional bulky lenses lies in their thin volume and lightweight. Nevertheless, as the application scenarios of metalenses extend to the macro-scale optical imaging field, a contradiction arises between the increasing demand for large-aperture metalenses and the synchronous rise in design and processing costs. In response to the application requirements of metalens with diameter reaching the order of 10λ or even 10λ, this paper proposes a novel design method for fixed-height concentric-ring metalenses, wherein, under the constraints of the processing technology, a subwavelength 2D building unit library is constructed based on different topological structures, and the overall cross-section of the metalens is assembled.

View Article and Find Full Text PDF

Due to recent advances in 3D reconstruction from RGB images, it is now possible to create photorealistic representations of real-world scenes that only require minutes to be reconstructed and can be rendered in real time. In particular, 3D Gaussian splatting shows promising results, outperforming preceding reconstruction methods while simultaneously reducing the overall computational requirements. The main success of 3D Gaussian splatting relies on the efficient use of a differentiable rasterizer to render the Gaussian scene representation.

View Article and Find Full Text PDF

Background: Traffic crashes are the leading cause of death globally for people aged 5-29 years, with 90% of mortality occurring in low- and middle-income countries (LMICs). The STABLE (Slashing Two-wheeled Accidents by Leveraging Eyecare) trial was designed to determine whether providing spectacles could reduce risk among young myopic motorcycle users in Vietnam.

Methods: This investigator-masked, stepped-wedge, cluster randomised naturalistic driving trial will recruit 625 students aged 18-23 years, driving ≥ 50 km/week, with ≥ 1-year driving experience and using motorcycles as their primary means of transport, in 25 clusters of 25 students in Ho Chi Minh City, Vietnam.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!