Endoplasmic reticulum stress-inducing drugs sensitize glioma cells to temozolomide through downregulation of MGMT, MPG, and Rad51.

Neuro Oncol

Department of Medical Oncology, University Hospital of Navarra, Pamplona, Navarra, Spain (E.X., N.M.-V, B.V., M.G.-H, A.M.A, M.M.A); Department of Hepatology, Foundation for Applied Medical Research, Pamplona, Navarra, Spain (T.A.); Department of Pathology, University Hospital of Navarra, Pamplona, Navarra, Spain (M.A.I); Department of Biochemistry, University of Navarra, Pamplona, Navarra, Spain (J.J.M.-I, A.G.G); Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK (C.J.); Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas (F.F.L, C.G.-M., J.F.).

Published: August 2016

Background: Endoplasmic reticulum (ER) stress results from protein misfolding imbalance and has been postulated as a therapeutic strategy. ER stress activates the unfolded protein response which leads to a complex cellular response, including the upregulation of aberrant protein degradation in the ER, with the goal of resolving that stress. O(6)-methylguanine DNA methyltransferase (MGMT), N-methylpurine DNA glycosylase (MPG), and Rad51 are DNA damage repair proteins that mediate resistance to temozolomide in glioblastoma. In this work we sought to evaluate whether ER stress-inducing drugs were able to downmodulate DNA damage repair proteins and become candidates to combine with temozolomide.

Methods: MTT assays were performed to evaluate the cytotoxicity of the treatments. The expression of proteins was evaluated using western blot and immunofluorescence. In vivo studies were performed using 2 orthotopic glioblastoma models in nude mice to evaluate the efficacy of the treatments. All statistical tests were 2-sided.

Results: Treatment of glioblastoma cells with ER stress-inducing drugs leads to downregulation of MGMT, MPG, and Rad51. Inhibition of ER stress through pharmacological treatment resulted in rescue of MGMT, MPG, and Rad51 protein levels. Moreover, treatment of glioblastoma cells with salinomycin, an ER stress-inducing drug, and temozolomide resulted in enhanced DNA damage and a synergistic antitumor effect in vitro. Of importance, treatment with salinomycin/temozolomide resulted in a significant antiglioma effect in 2 aggressive orthotopic intracranial brain tumor models.

Conclusions: These findings provide a strong rationale for combining temozolomide with ER stress-inducing drugs as an alternative therapeutic strategy for glioblastoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933483PMC
http://dx.doi.org/10.1093/neuonc/now022DOI Listing

Publication Analysis

Top Keywords

stress-inducing drugs
16
mpg rad51
16
mgmt mpg
12
dna damage
12
endoplasmic reticulum
8
downregulation mgmt
8
therapeutic strategy
8
damage repair
8
repair proteins
8
treatment glioblastoma
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!