Congenital disorders of glycosylation (CDG) are a relatively recently identified group of multisystem disorders caused by defective glycosylation of N-glycosylated proteins. They mainly involve the central and peripheral nervous system, but other organ systems are involved as well. Type CDG Ia accounts for over 80% of cases, characterized by decreased activity of the enzyme phosphomannomutase caused by mutations in chromosome 16 PMM2 gene. Treatment of CDG Ia remains symptomatic.

Download full-text PDF

Source

Publication Analysis

Top Keywords

type cdg
8
[congenital disorder
4
disorder glycosylation
4
glycosylation type
4
cdg
4
cdg underdiagnosed
4
underdiagnosed entity?]
4
entity?] congenital
4
congenital disorders
4
disorders glycosylation
4

Similar Publications

EXO: A Dual-Mechanism Stimulator of Interferon Genes Activator for Cancer Immunotherapy.

ACS Nano

January 2025

Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

As natural agonists of the stimulator of interferon genes (STING) protein, cyclic dinucleotides (CDNs) can activate the STING pathway, leading to the expression of type I interferons and various cytokines. Efficient activation of the STING pathway in antigen-presenting cells (APCs) and tumor cells is crucial for antitumor immune response. Tumor-derived exosomes can be effectively internalized by APCs and tumor cells and have excellent potential to deliver CDNs to the cytoplasm of APCs and tumor cells.

View Article and Find Full Text PDF

Background: Cases of congenital disorders of glycosylation (CDGs) are rare, and the occurrence of hemorrhagic infarction is also rare. The etiology is unclear.

Observations: A 3-year-old Asian boy with CDG type 1A was hospitalized with pneumonia.

View Article and Find Full Text PDF

Exploiting O-GlcNAc dyshomeostasis to screen O-GlcNAc transferase intellectual disability variants.

Stem Cell Reports

January 2025

Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark; Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK. Electronic address:

O-GlcNAcylation is an essential protein modification catalyzed by O-GlcNAc transferase (OGT). Missense variants in OGT are linked to a novel intellectual disability syndrome known as OGT congenital disorder of glycosylation (OGT-CDG). The mechanisms by which OGT missense variants lead to this heterogeneous syndrome are not understood, and no unified method exists for dissecting pathogenic from non-pathogenic variants.

View Article and Find Full Text PDF

Loss-of-function variants in ATP6V0A2, encoding the trans Golgi V-ATPase subunit V0a2, cause wrinkly skin syndrome (WSS), a connective tissue disorder with glycosylation defects and aberrant cortical neuron migration. We used knock-out (Atp6v0a2) and knock-in (Atp6v0a2) mice harboring the R755Q missense mutation selectively abolishing V0a2-mediated proton transport to investigate the WSS pathomechanism. Homozygous mutants from both strains displayed a reduction of growth, dermis thickness, and elastic fiber formation compatible with WSS.

View Article and Find Full Text PDF

Congenital disorder of glycosylation type Iy (CDG-Iy) is an X-linked monogenic inherited disease caused by variants in the SSR4 gene. To date, a total of 11 variants have been identified in 14 CDG-Iy patients. Our study identified a novel canonical splicing variant, c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!