Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity.

PLoS One

Department of Gastroenterology and Hepatology, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Published: July 2016

Introduction: Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis.

Aim: To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions.

Methods: HepG2.rNtcp cells were preconditioned (24 h) with sub-apoptotic concentrations (0.1-50 μM) of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h), menadione (50 μM, 6 h) or cytokine mixture (CM; 6 h). Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11) and bile acid sensors, as well as intracellular GCDCA levels were analyzed.

Results: Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauro)ursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA-preconditioning.

Conclusions: Sub-toxic concentrations of bile acids in the range that occur under normal physiological conditions protect HepG2.rNtcp cells against GCDCA-induced apoptosis, which is independent of FXR-controlled changes in bile acid transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780766PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149782PLOS

Publication Analysis

Top Keywords

bile acid
24
bile acids
24
hepg2rntcp cells
16
bile
14
cell death
12
acid
10
hormetic response
8
menadione tnf-α
8
reduced gcdca-induced
8
gcdca-induced caspase-3/7
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!