Rat sexual maturation is preceded by a reduction of the interpulse interval (IPI) of GnRH neurosecretion. This work aims at studying disruption of that neuroendocrine event in females after early exposure to a very low dose of bisphenol A (BPA), a ubiquitous endocrine disrupting chemical. Female rats were exposed to vehicle or BPA 25 ng/kg·d, 25 μg/kg·d, or 5 mg/kg·d from postnatal day (PND)1 to PND5 or PND15. Exposure to 25 ng/kg·d of BPA for 5 or 15 days was followed by a delay in developmental reduction of GnRH IPI studied ex vivo on PND20. After 15 days of exposure to that low dose of BPA, vaginal opening tended to be delayed. In contrast, exposure to BPA 5 mg/kg·d for 15 days resulted in a premature reduction in GnRH IPI and a trend toward early vaginal opening. RNA sequencing analysis on PND20 indicated that exposure to BPA resulted in opposing dose effects on the mRNA expression of hypothalamic genes involved in gamma aminobutyric acid A (GABAA) neurotransmission. The study of GnRH secretion in vitro in the presence of GABAA receptor agonist/antagonist confirmed an increased or a reduced GABAergic tone after in vivo exposure to the very low or the high dose of BPA, respectively. Overall, we show for the first time that neonatal exposure to BPA leads to opposing dose-dependent effects on the neuroendocrine control of puberty in the female rat. A very low and environmentally relevant dose of BPA delays neuroendocrine maturation related to puberty through increased inhibitory GABAergic neurotransmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2015-1937 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!