Boundary formation is a crucial developmental process in plant organogenesis. Boundaries separate cells with distinct identities and act as organizing centers to control the development of adjacent organs. In flower development, initiation of floral primordia requires the formation of the meristem-to-organ (M-O) boundaries and floral organ development depends on the establishment of organ-to-organ (O-O) boundaries. Studies in this field have revealed a suite of genes and regulatory pathways controlling floral boundary formation. Many of these genes are transcription factors that interact with phytohormone pathways. This review will focus on the functions and interactions of the genes that play important roles in the floral boundaries and discuss the molecular mechanisms that integrate these regulatory pathways to control the floral boundary formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813180 | PMC |
http://dx.doi.org/10.3390/ijms17030317 | DOI Listing |
J Exp Psychol Gen
January 2025
Department of Psychology, University of Trier.
How do we make sense of our surroundings? A widely recognized field in cognitive psychology suggests that many important functions like memory of incidents, reasoning, and attention depend on the way we segment the ongoing stream of perception (Zacks & Swallow, 2007). An open question still is, how the structure generated from a perceptual stream translates into behavior. To address this question, we combined the findings in event segmentation literature with another influential body of literature that analyzes mechanisms behind the control of individual actions (Frings et al.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India. Electronic address:
Thyroid gland which is responsible for the maintenance of metabolism and growth is derived from thyroglossal duct, an outpocketing of foregut. The microscopic study of thyroid gland during development in first, second and third trimesters has utmost significance to understand the several developmental thyroid disorders metabolically and structurally. This study is descriptive observational study carried in tissue sections taken from thyroid gland of still birth and spontaneously aborted human fetuses of first, second and third trimester.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Applied Mathematics, University of Calcutta, Kolkata, India.
The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.
View Article and Find Full Text PDFGenome Biol Evol
December 2024
Cornell University, Department of Natural Resources and the Environment, Ithaca, NY.
Transitions across ecological boundaries, such as those separating freshwater from the sea, are major drivers of phenotypic innovation and biodiversity. Despite their importance to evolutionary history, we know little about the mechanisms by which such transitions are accomplished. To help shed light on these mechanisms, we generated the first high-quality, near-complete assembly and annotation of the genome of the American shad (Alosa sapidissima), an ancestrally diadromous (migratory between salinities) fish in the order Clupeiformes of major cultural and historical significance.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg, Germany.
How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!