Characterization of the nanoscale structure of milk fat.

Food Chem

Department of Food Science, University of Guelph, Guelph, ON N1G 1Y2, Canada. Electronic address:

Published: July 2016

The nanoscale structure of milk fat (MF) crystal networks is extensively described for the first time through the characterization of milk fat-crystalline nanoplatelets (MF-CNPs). Removing oil by washing with cold isobutanol and breaking-down crystal aggregates by controlled homogenization allowed for the extraction and visualization of individual MF-CNPs that are mainly composed of high melting triacylglycerols (TAGs). By image analysis, the length and width of MF-CNPs were measured (600 nm × 200 nm-900 nm × 300 nm). Using small-angle X-ray scattering (SAXS), crystalline domain size, (i.e., thickness of MF-CNPs), was determined (27 nm (d001)). Through interpretation of ultra-small-angle X-ray scattering (USAXS) patterns of MF using Unified Fit and Guinier-Porod models, structural properties of MF-CNPs (smooth surfaces) and MF-CNP aggregations were characterized (RLCA aggregation of MF-CNPs to form larger structures that present diffused surfaces). Elucidation of MF-CNPs provides a new dimension of analysis for describing MF crystal networks and opens-up opportunities for modifying MF properties through nanoengineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2016.02.064DOI Listing

Publication Analysis

Top Keywords

nanoscale structure
8
structure milk
8
milk fat
8
crystal networks
8
x-ray scattering
8
mf-cnps
7
characterization nanoscale
4
fat nanoscale
4
fat crystal
4
networks extensively
4

Similar Publications

Background: Elemental analysis of teeth allows for exposure assessment during critical windows of development and is increasingly used to link early life exposures and health. The measurement of inorganic elements in teeth is challenging; laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is the most widely used technique.

Objective: Both synchrotron x-ray fluorescence (SXRF) and LA-ICP-MS have the capability to measure elemental distributions in teeth with each having distinct advantages and disadvantages.

View Article and Find Full Text PDF

Time-resolved Brownian tomography of single nanocrystals in liquid during oxidative etching.

Nat Commun

January 2025

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.

Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution.

View Article and Find Full Text PDF

Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.

View Article and Find Full Text PDF

NH-MIL-125(Ti) and its functional nanomaterials - a versatile platform in the photocatalytic arena.

Nanoscale

January 2025

Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.

Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.

View Article and Find Full Text PDF

Models and simulations of structural DNA nanotechnology reveal fundamental principles of self-assembly.

Chem Soc Rev

January 2025

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.

DNA is not only a centrally important molecule in biology: the specificity of bonding that allows it to be the primary information storage medium for life has also allowed it to become one of the most promising materials for designing intricate, self-assembling structures at the nanoscale. While the applications of these structures are both broad and highly promising, the self-assembly process itself has attracted interest not only for the practical applications of designing structures with more efficient assembly pathways, but also due to a desire to understand the principles underlying self-assembling systems more generally, of which DNA-based systems provide intriguing and unique examples. Here, we review the fundamental physical principles that underpin the self-assembly process in the field of DNA nanotechnology, with a specific focus on simulation and modelling and what we can learn from them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!