Purpose: Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement.
Methods: The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure.
Results: Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure.
Conclusions: Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpor.2016.02.001 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 180 00, Czechia.
This work investigates the surface chemistry of the Ru/CeO catalyst under varying pretreatment conditions and during the oxidation of propane, focusing on both dry and humid environments. Our results show that the Ru/CeO catalyst calcined in O at 500 °C initiates propane oxidation at 200 °C, achieves high conversion rates above 400 °C, and demonstrates almost no change in activity in the presence of water vapor across the entire studied temperature range of 200-500 °C. Prereduction of the oxidized Ru/CeO catalyst in H significantly enhances its activity, though this enhancement diminishes at higher temperatures.
View Article and Find Full Text PDFTransfusion
January 2025
Hematology-Oncology and Cell Therapy University Institute, Hôpital Maisonneuve-Rosemont Research Center, Montréal, Quebec, Canada.
Background: Cold agglutinin disease (CAD) or syndrome (CAS) can be particularly challenging when autologous stem cell transplant (ASCT) is needed. Standard peripheral blood stem cell (PBSC) collection and manipulation involve ex vivo blood manipulations at lower than body temperature, predisposing to agglutination during graft collection, handling, processing, and infusion.
Study Design And Methods: We describe the first case of ASCT for relapsing lymphoma in a patient with high-titer CAD requiring anti-complement therapy and chronic transfusion.
Laser ablation propulsion is an important micro-propulsion system for microsatellites. Polymers with carbon added and carbon-based nanomaterial have been demonstrated as propellants with high impulse coupling coefficient (C). Among them, the carbon nanotube film exhibits a low ablation threshold fluence of 25 mJ/cm, which shows its potential for propulsion under low laser fluence.
View Article and Find Full Text PDFAnal Chem
January 2025
Environment Research Institute, Shandong University, Qingdao 266237, China.
Globally, drug-impaired driving fatalities now exceed those from drunk driving, urging the need for on-site and roadside detection methods. In this study, a photothermal desorption and reagent-assisted low-temperature plasma ionization miniature ion trap mass spectrometer (PDRA-LTP-ITMS) was developed for on-site detection of drug-impaired driving. The pseudomultiple reaction monitoring (MRM) in PDRA-LTP-ITMS enables continuous ion selection during ion introduction and improved sensitivity to nearly 3-fold compared with the conventional full scan mode.
View Article and Find Full Text PDFAnal Chem
January 2025
Cigar Technology Innovation Center of China Tobacco, Cigar Fermentation Technology Key Laboratory of China Tobacco (China Tobacco Sichuan Industrial Co., Ltd.), Chengdu 610066, People's Republic of China.
This study developed a portable arc iKnife ionization mass spectrometry (AII-MS) technique integrating a surgical knife with low-temperature arc plasma to interact with plant tissues. The thermal energy from the arc plasma induces the sputtering of water-containing plant tissues, leading to the formation of aerosols. These aerosols are then charged by plasma-generated ions, producing charged microdroplets that are ultimately detected by a mass spectrometer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!