Organisms of Gram-negative phylum bacteroidetes, Porphyromonas gingivalis, underwent lysis on polished surfaces of silicon nitride (Si3N4) bioceramics. The antibacterial activity of Si3N4 was mainly the result of chemically driven principles. The lytic activity, although not osmotic in nature, was related to the peculiar pH-dependent surface chemistry of Si3N4. A buffering effect via the formation of ammonium ions (NH4(+)) (and their modifications) was experimentally observed by pH microscopy. Lysis was confirmed by conventional fluorescence spectroscopy, and the bacteria's metabolism was traced with the aid of in situ Raman microprobe spectroscopy. This latter technique revealed the formation of peroxynitrite within the bacterium itself. Degradation of the bacteria's nucleic acid, drastic reduction in phenilalanine, and reduction of lipid concentration were observed due to short-term exposure (6 days) to Si3N4. Altering the surface chemistry of Si3N4 by either chemical etching or thermal oxidation influenced peroxynitrite formation and affected bacteria metabolism in different ways. Exploiting the peculiar surface chemistry of Si3N4 bioceramics could be helpful in counteracting Porphyromonas gingivalis in an alkaline pH environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.6b00393 | DOI Listing |
Sci Rep
December 2024
Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.
Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China. Electronic address:
Objectives: Periodontitis is an inflammatory and destructive disease caused by dental plaque, which can result in the immune microenvironment disorders and loss of periodontal support tissue. In order to promote the restoration of local microenvironment stability, a functional biomaterial Gelatin methacryloyl @MP196/exos based on characteristics of disease occurrence is designed.
Methods: Transmission electron microscopy, nanosight particle tracking analysis and western blot analysis were applied to prove the presence of exos in GelMA@MP196/exos.
Curr Issues Mol Biol
November 2024
Institute of Biomaterial • Implant, Department of Oral Anatomy, School of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea.
has been used both as a food and in traditional medicine. However, its anti-inflammatory effects in periodontal diseases have not been studied. We examined the anti-inflammatory properties of extract in RAW 264.
View Article and Find Full Text PDFJ Clin Periodontol
December 2024
Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China.
Aim: Porphyromonas gingivalis, a consensus periodontal pathogen, is thought to be involved in Alzheimer's disease (AD) progression, and P. gingivalis-derived outer membrane vesicles (PgOMVs) are a key toxic factor in inducing AD pathology. This study aimed to clarify the regulatory mechanism underlying the PgOMV-induced AD-like phenotype.
View Article and Find Full Text PDFBiotechnol Lett
December 2024
Key Laboratory of Environmental Chemistry and Ecotoxicology of Organic Pollutants of Chongqing, Ecological and Environment Monitoring Center of Chongqing, 252 Qishan Road, Chongqing, 401132, China.
Rapid diagnostic tools for Porphyromonas gingivalis (Pg), the primary microorganism responsible for the development of periodontitis, particularly those designed for chair-side applications, could provide substantial health benefits to patients. To address this issue, we developed a CRISPR/Cas12a-based rapid Pg detection method. Dual-gRNA and hairpin reporter strategies were employed to enhance CRISPR/Cas12a reaction efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!