Synergistic cytotoxic effects of combined δ-tocotrienol and jerantinine B on human brain and colon cancers.

J Ethnopharmacol

School of Biosciences, Faculty of Science, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Biotechnology Research Centre, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia. Electronic address:

Published: May 2016

Ethnopharmacological Relevance: The genus Tabernaemontana has widespread distribution throughout tropical and subtropical parts of the world, i.e. Africa, Asia and America which has long been used for treatments of different disease conditions including tumours, wounds, syphilis, stomach ache and headache. Some Tabernaemontana species are used for treatment of piles, spleen and abdominal tumours in India. In particular, the leaf of Tabernaemontana corymbosa is used for treatment of tumours in Bangladesh. Parts of the plant or whole plants are used as decoctions, steam bath, powder and ointments.

Aim Of Study: The present study was undertaken to study the mechanism of apoptosis induction in human glioblastoma (U87MG) and colorectal adenocarcinoma (HT-29) cancer cells by a novel indole alkaloid, jerantinine B isolated from T. corymbosa, δ-tocotrienol and the combined low-dose treatments of δ-tocotrienol with IC20 dose of jerantinine B.

Materials And Methods: Cell viability, isobologram and combinational index (CI) analyses were used to determine the pharmacological interaction between combined treatments based on the IC50 values obtained. Fluorescence and histochemical staining techniques as well as comet assay were used for evaluating the morphological changes and DNA damage pattern, respectively. The effects of treatments on microtubules, caspase activity and cell death were determined using immunofluorescence technique, caspase colorimetric and neutral red uptake assays, respectively.

Results: Jerantinine B, δ-tocotrienol and combined low-dose treatments induced a dose-dependent growth inhibition against U87MG and HT-29 cells selectively with less toxicity acted towards the normal MRC5 cells. Synergistic growth inhibition observed with CI values of 0.85 and 0.77 for U87MG and HT-29 cells, resulting in up to 2-fold and 3.8-fold dose reduction of δ-tocotrienol and jerantinine B, respectively. U87MG and HT-29 cells exhibited morphological features of apoptosis and double stranded DNA breaks. Individual and combined treatments induced caspase 8 and 3 activities and cell death independent of caspase activation on U87MG and HT-29 cells. An increased caspase 9 activity was also evident on U87MG and HT-29 treated with combined treatments and HT-29 cells treated with jerantinine B. Jerantinine B and combined low-dose treatments with δ-tocotrienol undoubtedly disrupted the microtubule networks.

Conclusion: The present study demonstrated the mechanism for cytotoxic potency of δ-tocotrienol and jerantinine B against U87MG and HT-29 cells. Furthermore, combined low-dose treatments induced concurrent synergistic inhibition of cancer cell growth with concomitant dose reduction thus minimizing toxicity to normal cells and improving potency of δ-tocotrienol and jerantinine B.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2016.03.004DOI Listing

Publication Analysis

Top Keywords

u87mg ht-29
24
ht-29 cells
24
δ-tocotrienol jerantinine
16
combined low-dose
16
low-dose treatments
16
combined treatments
12
treatments induced
12
jerantinine
9
treatments
9
cells
9

Similar Publications

Deer antlers are the fastest growing tissue. Because they are based on proto-oncogenes, to avoid the risk of cancer, antlers evolved strong anticancer mechanisms, and thus their extract (DVA) is effective also against the few human tumours studied so far. We assessed whether DVA is a general anticancer compound by testing the direct effects in cells of different tumours: glioblastoma (GBM; lines U87MG and U251), colorectal (CRC; lines DLD-1, HT-29, SW480, and SW620), breast cancer (BRCA; lines MCF7, SKBR3, and PA00), and leukaemia (THP-1).

View Article and Find Full Text PDF

Background: A number of research were conducted on the pyran and thiophene derivatives, which were attributed to have a wide range of biological activities, including anti-plasmodial, as well as acting as caspase, hepatitis C and cancer inhibitors.

Objective: The multicomponent reactions of the 5-acetyl-2-amino-4-(phenylamino)-thiophene-3-carbonitrile produced biologically active target molecules like pyran and their fused derivatives. Comparison between regular catalytic multi-component reactions and solvent-free ionic liquids immobilized multicomponent was studied.

View Article and Find Full Text PDF

Background: The 5-hydroxytryptamine receptor (5-HTR) family includes seven classes of receptors. The 5-HTR is the newest member of this family and contributes to different physiological and pathological processes. As a pathology, glioblastoma multiform (GBM) overexpresses 5-HTR; hence, this study aims to develop radiolabeled aryl piperazine derivatives as 5-HTR imaging agents.

View Article and Find Full Text PDF

In recent years, drugs that contain boronic acid groups, such as ixazomib (Ninlaro™) and bortezomib (Velcade™), have been used in the treatment of bone marrow cancer. The activity of compounds has been found to increase with the addition of boron atoms to the structure. In addition to these compounds, studies have found that fingolimod (FTY720) is more effective against breast cancer than cisplatin.

View Article and Find Full Text PDF

Increasing interest in new sources of secondary metabolites as biologically active substances has resulted in an advanced study of many plant species. Loquat ( (Thunb.) Lindl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!