Water-oil Janus emulsions: microfluidic synthesis and morphology design.

Soft Matter

The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Published: April 2016

AI Article Synopsis

  • Developed a simple method for creating water-oil Janus emulsions using a double-bore capillary microfluidic device with customizable shapes.
  • Employed a theoretical model combined with fluid properties to design the morphology of these emulsions by manipulating interfacial tensions.
  • Achieved variability in Janus emulsion morphology by adjusting the surfactant concentration and flow ratios, useful for industries that require precise control over particle shapes.

Article Abstract

In this work we developed a facile method to prepare water-oil Janus emulsions in situ with tunable morphologies by using a double-bore capillary microfluidic device. In addition, by combining the theory model and our liquids' properties, we propose a method to design the morphology of water-oil Janus emulsions. To systematically research Janus morphologies we combined the theory model and the fluids' properties. Under the model guidance, we carefully selected the liquids system where only the interfacial tension between the water phase and the continuous phase changed while keeping the other two interfacial tensions unchanged. Thus we could adjust the Janus morphology by changing the surfactant mass fraction in the continuous phase. In addition, with the double-bore capillary, we prepared water-oil Janus emulsions with a large flow ratio range. By adjusting the flow ratio and the surfactant mass fraction, we successfully prepared Janus emulsions with gradual morphology changes, which would be meaningful in fields that have a high demand for morphology designing of amphiphilic Janus particles.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6sm00130kDOI Listing

Publication Analysis

Top Keywords

janus emulsions
20
water-oil janus
16
double-bore capillary
8
theory model
8
continuous phase
8
surfactant mass
8
mass fraction
8
flow ratio
8
janus
7
emulsions
5

Similar Publications

Magnetic Janus Particles: Synthesis and Multifunctional Applications.

Macromol Rapid Commun

December 2024

Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

Magnetic Janus particles (MJPs) with compositional compartmentalization and strong magnetic responsiveness play a pivotal role in various application fields, such as biotechnology, medicine, and materials science. However, comprehensive reviews of the field of MJPs remain limited. Here, this article attempts to fill the gap by reviewing the current common synthetic strategies for MJPs, including masking, microfluidics, self-assembly, phase separation, and seeded emulsion polymerization, among others.

View Article and Find Full Text PDF

Janus particles, consisting of two or more chemically distinct composites within a single structural system, have attracted significant attention for their solid surfactant functionality, as well as their potential applications in micro/nanomotors and functional materials. Here, we present a simple and robust method to prepare plasmonic Janus particles consisting of a polystyrene-tethered gold nanorod (AuNRs@PS) head and a poly(4-vinylpyridine) (P4VP) head through emulsion confined assembly. The balance of the Janus particles can be finely tuned by adjusting the volume ratio of the AuNRs@PS solution and P4VP solution.

View Article and Find Full Text PDF

Preparation and Investigation of Temperature-Responsive SiO-PSBMA Janus Nanosheet with Salt-Tolerant Properties for Enhanced Recovery of Heavy Oil.

ACS Appl Mater Interfaces

December 2024

Shandong RuihengXingyu Petroleum Technology Development Co., Ltd, Qingdao 266000, P. R. China.

Enhancing heavy oil recovery is crucial to ensuring stable crude oil production. The development of stimulus-responsive Janus Pickering emulsifiers tailored for a reservoir environment has garnered significant attention in the field of reservoir production, emerging as a promising alternative to traditional surfactants. In this study, silica-based Janus nanosheets with temperature-responsive properties (OH-SiO-PSBMA JNs) are synthesized using sol-gel process and atom transfer radical polymerization (ATRP) method.

View Article and Find Full Text PDF

Zein/chitosan Janus film incorporated with tannic acid and cinnamon essential oil co-loaded Pickering emulsion for sustained controlled release and pork preservation.

Int J Biol Macromol

December 2024

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China. Electronic address:

The development of active packaging offers a promising approach to reducing food waste. However, challenges remain, particularly in achieving efficient release dynamics of active compounds and balancing the barrier properties. Herein, a Janus structure zein/chitosan film is custom designed by layer-by-layer casting method to achieve sustainable and unidirectional release performance of antimicrobial agent, which comprises an inner loading layer of tannic acid (TA) and cinnamon essential oil (CEO) co-loaded Pickering emulsion incorporated with chitosan and an outer barrier layer of zein.

View Article and Find Full Text PDF

To expand the potential applications of raw lacquer, snowman-like polystyrene (PS)-urushiol lanthanum (ULa) Janus composite particles were synthesized by emulsion swelling-assisted protrusion from PS/ULa core-shell composite microspheres. The morphology and chemical composition of the PS/ULa composite microspheres and the PS-ULa Janus composite particles were investigated with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR). The PS-ULa Janus particles were compartmentalized into two parts, each with a different morphology and chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!