Magnetically soft zinc-substituted cobalt ferrite ZnxCo1-xFe2O4 (x = 0.4, 0.5 and 0.6) nanocrystallites were successfully synthesized from cheap, abundant materials, using a mild, scalable hydrothermal route. The partial substitution of zinc by cobalt was generally observed to reduce the resulting crystallite sizes and the saturation magnetization. Post-synthesis annealing proved to be an efficient way of inducing crystallite growth to a certain limit, thereby improving the magnetic properties. In the annealing experiments crystallite growth was observed to be extremely dependent on the annealing atmosphere, with the size increasing from dynamic vacuum, to air, argon and helium. As prepared crystallite sizes were found to be between 4.74(1) nm and 5.90(1) nm. Heat treatment caused the growth to increase to anywhere between 7.9 nm and 21.7 nm. The largest crystallite sizes, 35.2(1) nm to 44.9(1) nm, were reached by compaction of the powders prior to heating. The largest magnetizations were generally observed in the largest samples containing the least amount of zinc. The highest observed saturation magnetization was 80.49(1) emu g(-1) measured for a sample with 35.2(1) nm sized crystallites of the composition Zn0.35Co0.66Fe1.99O4.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5dt04701cDOI Listing

Publication Analysis

Top Keywords

crystallite sizes
12
magnetic properties
8
generally observed
8
saturation magnetization
8
crystallite growth
8
crystallite
5
tuning size
4
size magnetic
4
properties znxco₁-xfe₂o₄
4
znxco₁-xfe₂o₄ nanocrystallites
4

Similar Publications

The literature shows a lack of significant research on the synthesis of large spherical PbTe quantum dots (QDs), particularly with controllable sizes and morphology. Here, we present for the first time a novel hot-injection method for the tunable, high-quality synthesis of cubooctahedral PbTe QDs within the size range of 10 nm to 16 nm. This method employs a combination of oleic acid (OA) with shorter carboxylic acids, including octanoic (OctA), decanoic (DA), and lauric acids (LA), tested at various volumetric ratios.

View Article and Find Full Text PDF

Enhanced bacterial cellulose production by indigenous isolates: Insights from mutagenesis and evolutionary techniques.

Int J Biol Macromol

January 2025

Iranian Research Organization for Science and Technology (IROST), Sh. Ehsani Rad St., Enqelab St., Ahmadabad Mostoufi Rd., Azadegan Highway, P. O. Box 33535-111, Tehran 3313193685, Iran.

Bacterial cellulose, with mechanical strength, high water absorption, and crystallinity, is used in eco-friendly packaging, wound dressings, and drug delivery systems. Despite its potential, industrial-scale production is limited by inefficiency and high costs, requiring high-yield strains and optimized growth conditions. This study found that indigenous isolates produce superior bacterial cellulose compared to standard strains.

View Article and Find Full Text PDF

Towards all inorganic antimony sulphide semitransparent solar cells.

Sci Rep

January 2025

Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.

NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.

View Article and Find Full Text PDF

Structure-Reactivity Relationship of Zeolite-Confined Rh Catalysts for Hydroformylation of Linear α-Olefins.

J Am Chem Soc

January 2025

Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.

Substituting the molecular metal complexes used in the industrial olefin hydroformylation process is of great significance in fundamental research and practical application. One of the major difficulties in replacing the classic molecular metal catalysts with supported metal catalysts is the low chemoselectivity and regioselectivity of the supported metal catalysts because of the lack of a well-defined coordination environment of the metal active sites. In this work, we have systematically studied the influences of key factors (crystallinity, alkali promoters, etc.

View Article and Find Full Text PDF

Direct conversion of CO with renewable H to produce methanol provides a promising way for CO utilization and H storage. Cu/ZnO catalysts are active, but their activities depend on the preparation methods. Here, we reported a facile mechanical grinding method for the fast synthesis of Cu@zeolitic imidazolate framework-8 (ZIF-8) derived Cu/ZnO catalysts applied in CO hydrogenation to methanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!