In situ forming implants (ISIs) formed from poly(lactic-co-glycolic acid) (PLGA) have been commercialized for local drug delivery to treat periodontitis, but drug release from these bulk materials is typically subject to an initial burst. In addition, PLGA has inferior material properties for the dynamic mechanical environment of gingival tissue. In this work, poly(β-amino ester) (PBAE) hydrogel microparticles were incorporated into a PLGA matrix to provide several new functions: mechanical support, porosity, space-filling, and controlled co-delivery of antimicrobial and osteogenic drugs. First, the effects of PBAE microparticles on ISI architecture and material properties throughout degradation were investigated. Second, the influence of PBAE microparticles on drug release kinetics was quantified. Over a 15 d period, ISIs containing PBAE microparticles possessed greater porosity, ranging from 42-80%, compared to controls, which ranged from 24-54% (p < 0.001), and these ISIs also developed significantly greater accessible volume to simulated cell-sized spheres after 5 d or more of degradation (p < 0.001). PBAE-containing ISIs possessed a more uniform microarchitecture, which preserved mechanical resilience after cyclical loading (p < 0.001), and the materials swelled to fill the injected space, which significantly increased interfacial strength in an artificial periodontal pocket (p < 0.0001). PBAE microparticles eliminated the burst of freely-mixed simvastatin compared to 36% burst from controls (p < 0.0001), and high-dose doxycycline release was prolonged from 2 d to 7 d by pre-loading drug into the microparticles. PBAE-containing PLGA ISIs are more effective space-filling scaffolds and offer improved release kinetics compared to existing ISIs used to treat periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-6041/11/2/025002DOI Listing

Publication Analysis

Top Keywords

pbae microparticles
16
polyβ-amino ester
8
hydrogel microparticles
8
situ forming
8
drug delivery
8
treat periodontitis
8
drug release
8
material properties
8
release kinetics
8
microparticles
7

Similar Publications

Improvement of Islet Engrafts via Treg Induction Using Immunomodulating Polymeric Tolerogenic Microparticles.

ACS Biomater Sci Eng

June 2023

Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.

Type 1 diabetes (T1D) is a life-threatening condition for which islet transplantation offers a way to extend longevity and vastly improve quality of life, but the degree and duration of success can vary greatly due to the patient's protective immunity against foreign material. The field is in need of cellular engineering modalities to promote a localized, tolerogenic environment to protect transplanted islet tissue. Artificial antigen-presenting cells (aAPCs) can be designed exogenously to mimic immune cells, such as dendritic cells, and administered to patients, allowing greater control over T cell differentiation.

View Article and Find Full Text PDF

Despite the promise of its therapeutic benefits, curcumin as a free molecule has failed to demonstrate significant clinical success. Arguably, its inherently poor stability and rapid clearance is a significant reason for these negative outcomes. The incorporation of curcumin into the backbone of a crosslinked hydrogel that utilizes poly(beta-amino ester) (PBAE) chemistry can provide a tunable protective network with the ability to release at a controlled rate while improving its therapeutic potential.

View Article and Find Full Text PDF

Once excessive, neurological disorders associated with inflammatory conditions will inevitably cause secondary inflammatory damage to brain tissue. Immunosuppressive therapy can reduce the inflammatory state, but resulting infections can expose the patient to greater risk. Using specific immune tolerance organs or tissues from the body, brain antigen immune tolerance treatment can create a minimal immune response to the brain antigens that does not excessively affect the body's immunity.

View Article and Find Full Text PDF

In situ forming implants (ISIs) formed from poly(lactic-co-glycolic acid) (PLGA) have been commercialized for local drug delivery to treat periodontitis, but drug release from these bulk materials is typically subject to an initial burst. In addition, PLGA has inferior material properties for the dynamic mechanical environment of gingival tissue. In this work, poly(β-amino ester) (PBAE) hydrogel microparticles were incorporated into a PLGA matrix to provide several new functions: mechanical support, porosity, space-filling, and controlled co-delivery of antimicrobial and osteogenic drugs.

View Article and Find Full Text PDF

Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

Acta Biomater

March 2016

Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States; Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, United States; Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, United States. Electronic address:

Unlabelled: Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!