Ensemble density functional theory (DFT) furnishes a rigorous theoretical framework for describing the non-dynamic electron correlation arising from (near) degeneracy of several electronic configurations. Ensemble DFT naturally leads to fractional occupation numbers (FONs) for several Kohn-Sham (KS) orbitals, which thereby become variational parameters of the methodology. The currently available implementation of ensemble DFT in the form of the spin-restricted ensemble-referenced KS (REKS) method was originally designed for systems with only two fractionally occupied KS orbitals, which was sufficient to accurately describe dissociation of a single chemical bond or the singlet ground state of biradicaloid species. To extend applicability of the method to systems with several dissociating bonds or to polyradical species, more fractionally occupied orbitals must be included in the ensemble description. Here we investigate a possibility of developing the extended REKS methodology with the help of the generalized valence bond (GVB) wavefunction theory. The use of GVB enables one to derive a simple and physically transparent energy expression depending explicitly on the FONs of several KS orbitals. In this way, a version of the REKS method with four electrons in four fractionally occupied orbitals is derived and its accuracy in the calculation of various types of strongly correlated molecules is investigated. We propose a possible scheme to ameliorate the partial size-inconsistency that results from perfect spin-pairing. We conjecture that perfect pairing natural orbital (NO) functionals of reduced density matrix functional theory (RDMFT) should also display partial size-inconsistency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp00236f | DOI Listing |
J Am Chem Soc
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, People's Republic of China.
Diatomic catalysts (DACs) present unique opportunities for harnessing ensemble effects between adjacent metal atoms, thus, expanding the properties of single-atom catalysts (SACs). However, the precise preparation and characterization of this type of catalyst remains challenging. Following a precursor-preselected strategy, here, we report the synthesis of a carbon nitride-supported Pd-DAC, which achieves an excellent yield of 92% for photocatalytic water-donating transfer hydrogenation of 4-vinylphenol to 4-ethylphenol, far exceeding that of other metal species, including Pd single atoms (47%) and nanoparticles (1%).
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia.
High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Queensland Micro-nanotechnology Center, Griffith University, West Creek Road, Nathan, QLD 4111, Brisbane, Queensland, 4059, AUSTRALIA.
Charge transfer excitation energies are known to be challenging for standard time-dependent (TD) density functional theory (DFT) calculations. Perturbative ensemble DFT (pEDFT) was suggested as an easy-to-implelemt, low-cost alternative to TDDFT, because it is an in principle exact theory for calculating excitation energies that produces useful valence excitation energies. Here, we examine analytically and numerically (based on the benzene-tetracyanoethylene complex) how well pEDFT performs in the charge transfer limit.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.
Many terpene glycosides exhibit contrasteric patterns of 1,2-diol glycosylation in which the more hindered alcohol bears a sugar; protection of the less hindered alcohol only increases steric repulsion. Here, we report a method for contrasteric glycosylation using a new sugar-linker that forms a cleavable, 10-membered ring with high efficiency, leading to syntheses of cotylenin E, J, and ISIR-050. Linker selection was aided by DFT calculations of side reactions and stereoselectivity, as well as conformational analyses using autoDFT, a Python script that converts SMILES strings to DFT-optimized conformational ensembles.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt. Electronic address:
The quick and precise estimation of D-π-A Organic Dye absorption maxima in different solvents is an important challenge for the efficient design of novel chemical structures that could improve the performance of dye-sensitized solar cells (DSSCs) and related technologies. Time-Dependent Density Functional Theory (TD-DFT) has often been employed for these predictions, but it has limitations, including high computing costs and functional dependence, particularly for solvent interactions. In this study, we introduce a high-accuracy and rapid deep-learning ensemble method using daylight fingerprints as chemical descriptors to predict the absorption maxima (λ) of D-π-A organic dyes in 18 different solvent environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!