A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs. | LitMetric

Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs.

Artif Intell Med

Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec, Canada J1H 5N4. Electronic address:

Published: March 2016

Objective: Antimicrobial stewardship programs have been shown to limit the inappropriate use of antimicrobials. Hospitals are increasingly relying on clinical decision support systems to assist in the demanding prescription reviewing process. In previous work, we have reported on an emerging clinical decision support system for antimicrobial stewardship that can learn new rules supervised by user feedback. In this paper, we report on the evaluation of this system.

Methods: The evaluated system uses a knowledge base coupled with a supervised learning module that extracts classification rules for inappropriate antimicrobial prescriptions using past recommendations for dose and dosing frequency adjustments, discontinuation of therapy, early switch from intravenous to oral therapy, and redundant antimicrobial spectrum. Over five weeks, the learning module was deployed alongside the baseline system to prospectively evaluate its ability to discover rules that complement the existing knowledge base for identifying inappropriate prescriptions of piperacillin-tazobactam, a frequently used antimicrobial.

Results: The antimicrobial stewardship pharmacists reviewed 374 prescriptions, of which 209 (56% of 374) were identified as inappropriate leading to 43 recommendations to optimize prescriptions. The baseline system combined with the learning module triggered alerts in 270 prescriptions with a positive predictive value of identifying inappropriate prescriptions of 74%. Of these, 240 reviewed prescriptions were identified by the alerts of the baseline system with a positive predictive value of 82% and 105 reviewed prescriptions were identified by the alerts of the learning module with a positive predictive value of 62%. The combined system triggered alerts for all 43 recommendations, resulting in a rate of actionable alerts of 16% (43 recommendations of 270 reviewed alerts); the baseline system triggered alerts for 38 interventions, resulting in a rate of actionable alerts of 16% (38 of 240 reviewed alerts); and the learning module triggered alerts for 17 interventions, resulting in a rate of actionable alerts of 16% (17 of 105 reviewed alerts). The learning module triggered alerts for every inappropriate prescription missed by the knowledge base of the baseline system (n=5).

Conclusions: The learning module was able to extract clinically relevant rules for multiple types of antimicrobial alerts. The learned rules were shown to extend the knowledge base of the baseline system by identifying pharmacist interventions that were missed by the baseline system. The learned rules identified inappropriate prescribing practices that were not supported by local experts and were missing from its knowledge base. However, combining the baseline system and the learning module increased the number of false positives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2016.02.001DOI Listing

Publication Analysis

Top Keywords

learning module
32
baseline system
32
knowledge base
20
triggered alerts
20
antimicrobial stewardship
16
alerts
14
clinical decision
12
decision support
12
system
12
module triggered
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!