A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Micro-computed tomography assisted distal femur metaphyseal blunt punch compression for determining trabecular bone strength in mice. | LitMetric

Micro-computed tomography assisted distal femur metaphyseal blunt punch compression for determining trabecular bone strength in mice.

J Biomech

Department of Orthopaedic Surgery, University of Louisville School of Medicine, Louisville, KY, USA; Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, USA. Electronic address:

Published: May 2016

Shorter generation time and the power of genetic manipulation make mice an ideal model system to study bone biology as well as bone diseases. However their small size presents a challenge to perform strength measurements, particularly of the weight-bearing cancellous bone in the murine long bones. We recently developed an improved method to measure the axial compressive strength of the cancellous bone in the distal femur metaphysis in mice. Transverse micro-computed tomography image slices that are 7µm thick were used to locate the position where the epiphysis-metaphysis transition occurs. This enabled the removal of the distal femur epiphysis at the exact transition point exposing the full extent of metaphyseal trabecular bone, allowing more accurate and consistent measurement of its strength. When applied to a murine model system consisting of five month old male wild-type (WT) and Ca(2+)/calmodulin dependent protein kinase kinase 2 (CaMKK2) knockout (KO) Camkk2(-/-) mice that possess recorded differences in trabecular bone volume, data collected using this method showed good correlation between bone volume fraction and strength of trabecular bone. In combination with micro-computed tomography and histology, this method will provide a comprehensive and consistent assessment of the microarchitecture and tissue strength of the cancellous bone in murine mouse models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851615PMC
http://dx.doi.org/10.1016/j.jbiomech.2016.02.040DOI Listing

Publication Analysis

Top Keywords

trabecular bone
16
micro-computed tomography
12
distal femur
12
cancellous bone
12
bone
10
model system
8
bone murine
8
strength cancellous
8
bone volume
8
strength
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!