Qi arrival is the meridian qi response to acupuncture stimulation. Through analyzing the relevant concepts of qi arrival and summarizing the general understanding of it in clinic and on the basis of the collection of the relevant literature at home and abroad on the determination of qi arrival and its strength, the characteristics are analyzed on the present method and the method for the determination of qi arrival and its strength is discussed in terms of the results in the needling sensation scale. It is believed that the needling sensation and its strength can be used to determine whether the qi is arrived or not and its strength. The components of different types of needling sensation are much better applicable for the analysis on the characteristics and rules on the influence on qi arrival. This method is in compliance not only with the theoretic connotation of qi arrival, but also with the clinical general understanding, which lays the foundation for the analysis on the scale results.

Download full-text PDF

Source

Publication Analysis

Top Keywords

arrival strength
12
needling sensation
12
general understanding
8
determination arrival
8
arrival
7
strength
5
[how determine
4
determine arrival
4
strength clinical
4
clinical research]
4

Similar Publications

This study uses machine learning and multicenter registry data for analyzing the determinants of a favorable neurological outcome in patients with out-of-hospital cardiac arrest (OHCA) and developing decision support systems for various subgroups. The data came from the Korean Cardiac Arrest Research Consortium registry, with 2679 patients who underwent OHCA aged 18 or above with the return of spontaneous circulation (ROSC). The dependent variable was a favorable neurological outcome (Cerebral Performance Category score 1-2), and 68 independent variables were included, e.

View Article and Find Full Text PDF

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

Long-Term Natural Hydroxyapatite and Synthetic Collagen Hydroxyapatite Enhance Bone Regeneration and Implant Fixation Similar to Allograft in a Sheep Model of Implant Integration.

Calcif Tissue Int

January 2025

Orthopaedic Research Laboratory, Department of Orthopedic Surgery and Traumatology, Odense University Hospital & Department of Clinical Research, University of Southern Denmark, V18-812B-1, Etage 1, Bygning 45.4, Nyt Sund, SDU Campus 5230, Odense, Denmark.

There is an increasing demand for a suitable bone substitute to replace current clinical gold standard autografts or allografts. Majority of previous studies have focused on the early effects of substitutes on bone formation, while information on their long-term efficacies remains limited. This study investigated the efficacies of natural hydroxyapatite (nHA) derived from oyster shells and synthetic hydroxyapatite mixed with collagen (COL/HA) or chitosan (CS/HA) on bone regeneration and implant fixation in sheep.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effect of different times return to activity on tendon healing after Double Kessler method suture in rats with Achilles tendon rupture. The left Achilles tendon of 80 10-week-old rats was repaired. The rats were randomly divided into 4 groups: non-fixed group, fixed one week group, fixed two weeks group and fixed three weeks group.

View Article and Find Full Text PDF

Hot dry rock (HDR) is a novel green, low-carbon energy. Its development requires the creation of fracture channels in deep thermal reservoirs. Traditional methods such as hydraulic fracturing have limited effectiveness in reservoir stimulation, so a method of liquid nitrogen cold shock was proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!