Recent advances in neuroimaging have offered a rich array of structural and functional markers to probe the organization of regional and large-scale brain networks. The current chapter provides a brief introduction into these techniques and overviews their contribution to the understanding of autism spectrum disorder (ASD), a neurodevelopmental condition associated with atypical social cognition, language function, and repetitive behaviors/interests. While it is generally recognized that ASD relates to structural and functional network anomalies, the extent and overall pattern of reported findings have been rather heterogeneous. Indeed, while several attempts have been made to label the main neuroimaging phenotype of ASD (e.g., 'early brain overgrowth hypothesis', 'amygdala theory', 'disconnectivity hypothesis'), none of these frameworks has been without controversy. Methodological sources of inconsistent results may include differences in subject inclusion criteria, variability in image processing, and analysis methodology. However, inconsistencies may also relate to high heterogeneity across the autism spectrum itself. It, therefore, remains to be investigated whether a consistent imaging phenotype that adequately describes the entire autism spectrum can, in fact, be established. On the other hand, as previous findings clearly emphasize the value of neuroimaging in identifying atypical brain morphology, function, and connectivity, they ultimately support its high potential to identify biologically and clinically relevant endophenotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/7854_2016_438 | DOI Listing |
J Mol Neurosci
January 2025
Department II of Acupuncture and Moxibustion, Dongzhimen Hospital Beijing University of Chinese Medicine, No. 116, Cuiping West Road, Tongzhou District, Beijing, 101121, China.
The purpose of this study was to investigate the expression of miR-499a-5p in children with autism spectrum disorders (ASD) and its value in early diagnosis of ASD. This is a retrospective case-control study that included 40 children with ASD as a case group and 43 healthy children as a control group. Magnetic resonance imaging (MRI) was performed on all subjects, and the children were scored with childhood autism rating scale (CARS) and autism behavior checklist (ABC).
View Article and Find Full Text PDFPhys Eng Sci Med
January 2025
Institute of Digital Technologies for Personalized Healthcare (MeDiTech), University of Applied Sciences and Arts of Southern Switzerland, Via Pobiette, Manno, 6928, Manno, Switzerland.
The analysis of repetitive hand movements and behavioral transition patterns holds particular significance in detecting atypical behaviors in early child development. Early recognition of these behaviors holds immense promise for timely interventions, which can profoundly impact a child's well-being and future prospects. However, the scarcity of specialized medical professionals and limited facilities has made detecting these behaviors and unique patterns challenging using traditional manual methods.
View Article and Find Full Text PDFFront Psychiatry
January 2025
Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan.
Aim: Functional neuroimaging studies have suggested that prefrontal cortex dysfunction occurs in individuals with autism spectrum disorder (ASD). Near-infrared spectroscopy (NIRS) is a noninvasive optical tool used to investigate oxygenation and hemodynamic responses in the cerebral cortex by measuring changes in oxygenated hemoglobin. Previous studies using NIRS have suggested that male children with ASD exhibit reduced hemodynamic responses in the dorsolateral prefrontal cortex; however, only a few studies examined this response in adults with ASD.
View Article and Find Full Text PDFFront Psychiatry
January 2025
School of Education Science, Jiangsu Normal University, Xuzhou, China.
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant impairments in social interaction, often manifested in facial recognition deficits. These deficits hinder individuals with ASD from recognizing facial identities and interpreting emotions, further complicating social communication. This review explores the neural mechanisms underlying these deficits, focusing on both functional anomalies and anatomical differences in key brain regions such as the fusiform gyrus (FG), amygdala, superior temporal sulcus (STS), and prefrontal cortex (PFC).
View Article and Find Full Text PDFFront Pediatr
January 2025
IRCCS Fondazione Don Carlo Gnocchi, Milano, Italy.
Background: It has been widely demonstrated that siblings of children with autism spectrum disorder (ASD) have an increased risk of abnormal developmental trajectories. In response to this, early recognition protocols have been developed worldwide, aiming to promote early interventions that can positively impact the neurodevelopment of this population. This paper presents the protocol of a controlled trial: ERI-SIBS (Early Recognition and Intervention in SIBlingS at High Risk for Neurodevelopment Disorders) is an innovative and ecological early recognition and intervention program designed specifically for siblings of children with ASD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!