The ability to construct easily in vitro networks of primary neurons organized with imposed topologies is required for neural tissue engineering as well as for the development of neuronal interfaces with desirable characteristics. However, accumulating evidence suggests that the mechanical properties of the culture matrix can modulate important neuronal functions such as growth, extension, branching and activity. Here we designed robust and reproducible laminin-polylysine grid micropatterns on cell culture substrates that have similar biochemical properties but a 100-fold difference in Young's modulus to investigate the role of the matrix rigidity on the formation and activity of cortical neuronal networks. We found that cell bodies of primary cortical neurons gradually accumulate in circular islands, whereas axonal extensions spread on linear tracks to connect circular islands. Our findings indicate that migration of cortical neurons is enhanced on soft substrates, leading to a faster formation of neuronal networks. Furthermore, the pre-synaptic density was two times higher on stiff substrates and consistently the number of action potentials and miniature synaptic currents was enhanced on stiff substrates. Taken together, our results provide compelling evidence to indicate that matrix stiffness is a key parameter to modulate the growth dynamics, synaptic density and electrophysiological activity of cortical neuronal networks, thus providing useful information on scaffold design for neural tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2016.02.041 | DOI Listing |
Cells
January 2025
Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
Neuroinflammation is a complex and multifaceted process that involves dynamic interactions among various cellular and molecular components. This sophisticated interplay supports both environmental adaptability and system resilience in the central nervous system (CNS) but may be disrupted during neuroinflammation. In this article, we first characterize the key players in neuroimmune interactions, including microglia, astrocytes, neurons, immune cells, and essential signaling molecules such as cytokines, neurotransmitters, extracellular matrix (ECM) components, and neurotrophic factors.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Department of Mathematics, Aston University, Birmingham B4 7ET, United Kingdom.
Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process.
View Article and Find Full Text PDFSci Rep
January 2025
Dept. of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany.
Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy.
View Article and Find Full Text PDFBrain Res Bull
January 2025
First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 150040 Harbin, Heilongjiang, China. Electronic address:
Major depressive disorder (MDD) is a common mental disorder with chronic tendencies that seriously affect regular work, life, and study. However, its exact pathogenesis remains unclear. Patients with MDD experience systemic and localized impairments in glucose metabolism throughout the disease course, disrupting various processes such as glucose uptake, glycoprotein transport, glycolysis, the tricarboxylic acid cycle (TCA), and oxidative phosphorylation (OXPHOS).
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prosthodontics, Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China. Electronic address:
Eating behavior stands as a fundamental determinant of animal survival and growth, intricately regulated by an amalgamation of internal and external stimuli. Coordinated movements of facial muscles and the mandible orchestrate prey capture and food processing, propelled by the allure of taste and rewarding food properties. Conversely, satiation, pain, aversion, negative emotion or perceived threats can precipitate the cessation or avoidance of eating activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!