Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Activity Regulated Cytoskeleton Associated Protein (Arc) is an immediate early gene that is critical to brain plasticity. In this study, norepinephrine's regulation of Arc expression was examined during different stages of postnatal development. Rats were injected with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a selective noradrenergic neurotoxin, during preadolescence (PND 0 or 13), adolescence (PND 23 or 48) or adulthood (PND 60). After each DSP4 treatment, brains were harvested later in development and Arc mRNA levels analyzed with in situ hybridization. Rats lesioned with DSP4 during preadolescence showed no differences in Arc level compared to saline treated controls. In contrast, adolescence was a time of changing Arc mRNA response to DSP4. Rats lesioned during early adolescence showed Arc expression increases, while rats lesioned during late adolescence showed dramatic Arc expression decreases. Decreases in Arc level caused by late adolescent DSP4 were similar to those found in lesioned adults. These findings highlight a qualitatively different regulation of Arc expression by norepinephrine according to developmental stage, and indicate that mature regulation is not intact until late adolescence. These data point to important developmental differences in norepinephrine's regulation of brain plasticity. These differences may underlie contrasting psychotropic responses in children and adolescents compared to adults.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818721 | PMC |
http://dx.doi.org/10.1016/j.neulet.2016.02.063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!