Nitrocellulose (NC) is one of the most common ingredients in explosive mixtures, however because of its non-volatility, its detection using Gas Chromatography-Electron Ionization-Mass Spectrometry (GC-EI-MS) has not been achieved until today. A rapid method for the identification of NC in bulk explosives using GC-EI-MS was developed. The sample preparation is simple and takes place in a test tube, employing standard equipment of a forensics laboratory. The protocol was optimized and applied to seven, both high and low, commercial explosives, which contained the substance of interest. Moreover, three explosives in the absence of NC were tested to cross check for false positives. Fourteen different standard explosive substances that are usually found in explosive mixtures were then employed in order to monitor the effect of the method on these compounds and check for interferences. Results showed that NC was detected, by its trimethylsilyl (TMS) derivatives, in all the explosive mixtures analyzed and no false positives were observed. The proposed method showed selectivity for NC, as it had no interference coming from other ingredients of explosive mixtures. The protocol introduced offers considerable improvement in identifying the individual components of an explosive mixture and contributes in successful classification of explosives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2016.01.038 | DOI Listing |
Materials (Basel)
January 2025
State Key Laboratory of Explosion Science and Protection Technology, Beijing Institute of Technology, Beijing 100081, China.
Hydrogen embrittlement is a critical issue for zirconium alloys, which receives long-term attention in their applications. The formation of brittle hydrides facilitates crack initiation and propagation, thereby significantly reducing the material's ductility. This study investigates the tensile properties and hydride morphology of a novel zirconium alloy under different hydrogen-charging current densities ranging from 0 to 300 mA/cm, aiming to clarify the influence of hydrides on the fracture behavior of the alloy.
View Article and Find Full Text PDFAstrobiology
January 2025
NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.
Meteoritic impacts on planetary surfaces deliver a significant amount of energy that can produce prebiotic organic compounds such as cyanides, which may be a key step to the formation of biomolecules. To study the chemical processes of impact-induced organic synthesis, we simulated the physicochemical processes of hypervelocity impacts (HVI) in experiments with both high-speed C projectiles and laser ablation. In the first approach, a C beam was accelerated to collide with ammonium nitrate (NHNO) to reproduce the shock process and plume generation of meteoritic impacts on nitrogen-rich planetary surfaces.
View Article and Find Full Text PDFSci Rep
January 2025
Northwest Sichuan Gas District of Southwest Oil and Gasfield Company, Jiangyou, 621700, China.
With the wide application of hydrogen-doped natural gas (HBNG) in end users, laying pipelines in urban, comprehensive pipe corridors has become increasingly common. However, the leakage and diffusion of hydrogen-doped natural gas in confined or semi-confined spaces (e.g.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences (ISPM RAS), Profsoyuznaya St. 70, 117393 Moscow, Russia.
The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates.
View Article and Find Full Text PDFRSC Adv
January 2025
V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
Detecting small concentrations of nitro-compounds surface-enhanced Raman spectroscopy (SERS) is reported. In particular, explosive analogues, such as 4-nitrophenol, 1-nitronaphthalene, and 5-nitroisoquinoline, and an explosive material (picric acid) are investigated and prepared by measurements using two different methods. One method involved mixing the analyte with plasmonic silver nanoparticles (Ag NPs) in a solution, followed by subsequent drop-casting of the mixture onto a silicon substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!