As the severe infections caused by resistant pathogens and biofilm embedded bacteria continue to emerge, alternative antimicrobial strategies could represent a solution. Recent studies support the development of molecular approaches (through signaling molecules) aiming to fight infections by modulating the virulence, behavior and formation of resistance structures such as biofilms. The utilization of such formulations would offer the advantage of reducing the selection of resistant isolates, since most of the proposed molecules do not interfere with the population fitness if utilized in low amounts. Despite the promising results, these therapies are delaying to be applied in the clinical context mainly because of the following: (i) limited knowledge regarding their long and medium term effect, (ii) specific properties that make most of these molecules difficult to be utilized in pharmacological formulations, (iii) low stability, (iv) difficulty to reach a target within the host body, and (v) limited availability. For reducing most of these disadvantages, nanotechnology seem to offer the best option through the development of nanostructured materials and nanoparticles able to improve the efficiency of molecular virulence modulators and novel antimicrobial compounds and to ensure their targeted delivery and controlled release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2016.02.044 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!