The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification.

Dev Biol

Department of Ecology and Evolution and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA. Electronic address:

Published: May 2016

C/EBPα plays an instructive role in the macrophage-neutrophil cell-fate decision and its expression is necessary for neutrophil development. How Cebpa itself is regulated in the myeloid lineage is not known. We decoded the cis-regulatory logic of Cebpa, and two other myeloid transcription factors, Egr1 and Egr2, using a combined experimental-computational approach. With a reporter design capable of detecting both distal enhancers and silencers, we analyzed 46 putative cis-regulatory modules (CRMs) in cells representing myeloid progenitors, and derived early macrophages or neutrophils. In addition to novel enhancers, this analysis revealed a surprisingly large number of silencers. We determined the regulatory roles of 15 potential transcriptional regulators by testing 32,768 alternative sequence-based transcriptional models against CRM activity data. This comprehensive analysis allowed us to infer the cis-regulatory logic for most of the CRMs. Silencer-mediated repression of Cebpa was found to be effected mainly by TFs expressed in non-myeloid lineages, highlighting a previously unappreciated contribution of long-distance silencing to hematopoietic lineage resolution. The repression of Cebpa by multiple factors expressed in alternative lineages suggests that hematopoietic genes are organized into densely interconnected repressive networks instead of hierarchies of mutually repressive pairs of pivotal TFs. More generally, our results demonstrate that de novo cis-regulatory dissection is feasible on a large scale with the aid of transcriptional modeling. Current address: Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4878123PMC
http://dx.doi.org/10.1016/j.ydbio.2016.02.030DOI Listing

Publication Analysis

Top Keywords

enhancers silencers
8
hematopoietic lineage
8
cis-regulatory logic
8
repression cebpa
8
cebpa
5
analysis novel
4
novel distal
4
distal cebpa
4
cebpa enhancers
4
transcriptional
4

Similar Publications

NSUN2-Mediated R-loop Stabilization as a Key Driver of Bladder Cancer Progression and Cisplatin Sensitivity.

Cancer Lett

December 2024

Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China. Electronic address:

R-loops are critical structures that play pivotal roles in regulating genomic stability and modulating gene expression. This study investigates the interactions between the 5-methylcytosine (mC) methyltransferase NOP2/Sun RNA methyltransferase 2 (NSUN2) and R-loops in the transcriptional dynamics and damage repair process of bladder cancer (BCa) cells. We observed markedly elevated levels of R-loops in BCa cells relative to normal urothelial cells.

View Article and Find Full Text PDF

LncRNA-THBS4 affects granulosa cell proliferation and apoptosis in diminished ovarian reserve by regulating PI3K/AKT/mTOR signaling pathway.

J Reprod Immunol

December 2024

School of Medical and Life Sciences/Reproductive &Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Wenjiang District, Chengdu, Sichuan Province 611137, China; Chengdu Fifth People's Hospital, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine. Electronic address:

Backgrounds: Recent studies have found Several lncRNAs were proved differential expression in diminished ovarian reserve (DOR) patients, however, the mechanism of DOR caused by lncRNAs is still largely unclear.

Methods: High throughput sequencing was performed in ovarian GCs extracted from women with normal ovarian function and women with DOR. Bioinformation analysis was used to analyze the sequencing data and identify the differential expression of lncRNAs.

View Article and Find Full Text PDF

Cold stress significantly limits the growth and yield of tea plants (Camellia sinensis (L.) O. Kuntze), particularly in northern China, may lead to huge economic losses.

View Article and Find Full Text PDF

The glutathione S-transferase BnGSTU12 enhances the resistance of Brassica napus to Sclerotinia sclerotiorum through reactive oxygen species homeostasis and jasmonic acid signaling.

Plant Physiol Biochem

December 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China. Electronic address:

Sclerotinia sclerotiorum is a severe disease that affects rapeseed (Brassica napus), resulting in significant yield losses. In previous study, we identified the candidate GLUTATHIONE S-TRANSFERASE (GST) gene, BnGSTU12, associated with sclerotiorum stem resistance and the expression levels of BnGSTU12 in resistant lines were higher than that in susceptible lines. We analyzed the function of the BnGSTU12 during S.

View Article and Find Full Text PDF

The UP1 domain is essential for the facilitation effect of HnRNP A1 on PRRSV-2 replication.

Virology

December 2024

Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China. Electronic address:

Porcine reproductive and respiratory syndrome virus (PRRSV) infection causes reproductive failure and respiratory distress and is a serious threat to the swine industry, given its continuous and rapid emergence. The knowledge of viral-host interaction could facilitate anti-PRRSV drug development. HnRNP A1 is an abundantly expressed protein which associates with RNA metabolic processes and plays multifarious roles during the reproduction cycle of multiple viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!