Hydrolysis of RNA by ribonuclease A crucially depends on the participation of the 2'-OH group as well as the positioning of the internucleotide bond at two different sites of the enzyme. Therefore, ribopyrimidines were modified with -SO2CH2CO2H, an acidic functional group, which was expected to interact with the phosphate binding site. These ribonucleosides were designed to understand the influence of the 2'-OH group of these inhibitors on ribonuclease A inhibition along with the effect of the -SO2CH2CO2H group. The "down" configuration of the 2'-OH group enhanced the inhibitory properties (Ki =1.75 μm) and also imparted important Val43 H-bonding with the furanose oxygen atom of the inhibitors. One of the most important aspects of this work is that there was no serendipitous discovery of the inhibitors. The inhibitors reported in this manuscript were obtained by design by employing chemical logic.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.201600007DOI Listing

Publication Analysis

Top Keywords

2'-oh group
12
employing chemical
8
chemical logic
8
inhibitors
5
group
5
carboxymethylsulfonylated ribopyrimidines
4
ribopyrimidines rational
4
rational design
4
design ribonuclease
4
ribonuclease inhibitors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!