A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems. | LitMetric

A multi-time-scale analysis of chemical reaction networks: II. Stochastic systems.

J Math Biol

School of Mathematics, University of Minnesota, Minneapolis, MN, 55455, USA.

Published: November 2016

We consider stochastic descriptions of chemical reaction networks in which there are both fast and slow reactions, and for which the time scales are widely separated. We develop a computational algorithm that produces the generator of the full chemical master equation for arbitrary systems, and show how to obtain a reduced equation that governs the evolution on the slow time scale. This is done by applying a state space decomposition to the full equation that leads to the reduced dynamics in terms of certain projections and the invariant distributions of the fast system. The rates or propensities of the reduced system are shown to be the rates of the slow reactions conditioned on the expectations of fast steps. We also show that the generator of the reduced system is a Markov generator, and we present an efficient stochastic simulation algorithm for the slow time scale dynamics. We illustrate the numerical accuracy of the approximation by simulating several examples. Graph-theoretic techniques are used throughout to describe the structure of the reaction network and the state-space transitions accessible under the dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6402880PMC
http://dx.doi.org/10.1007/s00285-016-0980-xDOI Listing

Publication Analysis

Top Keywords

chemical reaction
8
reaction networks
8
slow reactions
8
slow time
8
time scale
8
system rates
8
reduced system
8
multi-time-scale analysis
4
analysis chemical
4
networks stochastic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!