Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Different loadings of silver exchanged on bimetallic Zn/Ag-NaY zeolite materials were studied for antimicrobial properties against four reference microorganisms. The sensitive indicator strains used were two bacteria (Escherichia coli and Bacillus subtilis) and two yeast species (Saccharomyces cerevisiae and Candida albicans). The bimetallic materials were compared with the monometallic materials prepared with the same concentrations of silver. A synergistic effect between the two metals, zinc and silver, was evidenced on the antimicrobial activity of the materials. All mono and bimetallic materials showed strong efficacy against bacteria and yeasts, although the later overall displayed lower MIC values. The results of X-ray photoelectron spectroscopy (XPS) confirm the presence of silver and zinc as ions, not homogeneously distributed throughout the zeolite framework, which implies that the metal ions are located in different sites of the faujasite structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2016.02.042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!