The pathogenesis of autoimmune and neurodegenerative diseases involves overexpression of inducible subunits of the immunoproteasome. However, the clinical application of inhibitors to inducible subunits of the immunoproteasome has been limited due to systemic toxicity. Here, we designed siRNAs that efficiently silence LMP2, LMP7 and MECL-1 gene expression. Inducible subunits of the immunoproteasome are complex siRNA targets because they have a long half-life; therefore, we introduced 2'-O-methyl modifications into nuclease-sensitive sites. This led to 90-95% silencing efficiency and prolonged silencing, eliminating the need for multiple transfections. Furthermore, we showed that in the absence of transfection reagent, siRNAs with lipophilic residues were able to penetrate cells more effectively and decrease the expression of inducible immunoproteasome subunits by 35% after 5 days. These results show that siRNA targeted to inducible immunoproteasome subunits have great potential for the development of novel therapeutics for autoimmune and neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2016.02.015DOI Listing

Publication Analysis

Top Keywords

inducible immunoproteasome
12
immunoproteasome subunits
12
inducible subunits
12
subunits immunoproteasome
12
autoimmune neurodegenerative
8
neurodegenerative diseases
8
expression inducible
8
inducible
6
immunoproteasome
6
subunits
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!