Introduction: The microcirculation is the physiological site of oxygen and substrate exchange. Its effectiveness during circulatory shock is vital for the perfusion of tissues, and has a bearing on subsequent organ function and prognosis. Microcirculatory dysfunction following traumatic haemorrhagic shock (THS) has been understudied compared with other pathologies such as sepsis. The aim of the MICROSHOCK study is to investigate changes seen in the microcirculation of patients following THS, and to assess its response to resuscitation. A greater understanding of the behaviour and mechanisms of microcirculatory dysfunction in this context may direct future avenues of goal-directed resuscitation for these patients.
Methods And Analysis: This multicentre prospective longitudinal observational study includes patients who present as an emergency with THS. Microcirculatory parameters are recorded using sublingual incident dark field microscopy alongside measurements of global flow (oesophageal Doppler and transthoracic echocardiography). Patients are enrolled into the study as soon as feasible after they arrive in hospital, and then at subsequent daily time points. Blood samples are taken for investigation into the mechanisms of microcirculatory dysfunction. Sequential Organ Failure Assessment scores will be analysed with microcirculatory parameters to determine whether they correlate with greater fidelity than more conventional, global circulatory parameters.
Ethics And Dissemination: Research Ethics Committee approval has been granted for this study (Reference: 14/YH/0078). Owing to the nature of THS, capacity for informed consent will be absent on patient enrolment. This will be addressed according to the Mental Health Capacity Act 2005. The physician in charge of the patient's care (nominated consultee) may consent on behalf of the patient. Consent will also be sought from a personal consultee (close relative or friend). After capacity is regained, the participant will be asked for their consent. Results will be submitted for publication in peer-reviewed journal format and presented at relevant academic meetings.
Trial Registration Number: NCT02111109; Pre-results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785297 | PMC |
http://dx.doi.org/10.1136/bmjopen-2015-010893 | DOI Listing |
Medicina (Kaunas)
December 2024
Department of Dermatology, International University of Health and Welfare Narita Hospital, Chiba 286-8520, Japan.
Acquired reactive perforating dermatosis (ARPD) is characterized by its onset after the age of 18 years, umbilicated papules or nodules with a central keratotic plug, and the presence of necrotic collagen tissue within an epithelial crater. ARPD is strongly associated with systemic diseases such as diabetes mellitus (DM) and chronic renal failure, which may contribute to ARPD through factors including microcirculatory disturbances and the deposition of metabolic byproducts, including advanced glycation end-products and calcium. Here, we report a case of ARPD that improved following DM treatment and catheter-based interventions for peripheral artery disease (PAD).
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, CNRS UMR 5305, 69367 Lyon, France.
: According to the International Working Group on Diabetic Foot (IWGDF) risk classification, the estimated risk of developing a diabetic foot ulcer (DFU) is much higher in patients with a history of DFUs (Grade 3) compared to those with a peripheral neuropathy but without a history of DFUs (Grades 1 and 2). It has been suggested that microcirculation impairment is involved in DFU genesis and could be taken into account to refine the existing risk classification. The aim of this study was to evaluate microcirculation parameters in patients with diabetes according to their estimated DFU risk.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China.
Angio-based microvascular resistance (AMR) as a potential alternative to the index of microcirculatory resistance (IMR) and its relationship with microvascular obstruction (MVO) and other cardiac magnetic resonance (CMR) parameters still lacks comprehensive validation. This study aimed to validate the correlation between AMR and CMR-derived parameters and to construct an interpretable machine learning (ML) model, incorporating AMR and clinical data, to forecast MVO in ST-segment elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention (PPCI). We enrolled 452 STEMI patients from Nanjing Drum Tower Hospital between 2018 and 2022, who received both PPCI and CMR.
View Article and Find Full Text PDFJ Cardiovasc Med (Hagerstown)
February 2025
Center of Excellence in Cardiovascular Sciences, Ospedale Isola Tiberina, Gemelli Isola.
Aims: Coronary microvascular dysfunction (CMD) is a heterogeneous condition defined by reduced coronary flow reserve (CFR). The new index 'microvascular resistance reserve' (MRR) has been developed, but its role is unclear. We investigate the relationships between functional indices in ANOCA (angina and non-obstructive coronary arteries) patients and evaluate the hemodynamic features of different CMD subtypes.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Department of Cardiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
Background: Angiography-derived microcirculatory resistance (AMR) is proposed as a novel, pressure- temperature-wire-free and less-invasive method to evaluate coronary microvascular dysfunction (CMD). This study aims to examine the prognostic role of CMD assessed by AMR in predicting adverse events in acute coronary syndrome (ACS) patients with chronic kidney disease (CKD).
Methods: This retrospective cohort study included ACS with CKD patients in the China-Japan Friendship Hospital from January 2016 to November 2022.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!