Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November-December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2016.02.035DOI Listing

Publication Analysis

Top Keywords

highly pathogenic
24
influenza viruses
24
north america
20
pathogenic influenza
16
common ancestry
12
clade 2344
12
migratory birds
12
viruses
10
intercontinental reassortant
8
h5n2 h5n1
8

Similar Publications

Proteolysis-targeting influenza vaccine strains induce broad-spectrum immunity and in vivo protection.

Nat Microbiol

January 2025

State key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses.

View Article and Find Full Text PDF

Selected microwave irradiation effectively inactivates airborne avian influenza A(H5N1) virus.

Sci Rep

January 2025

The Edgar L. and Harold H. Buttner Chair of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA.

The highly pathogenic avian influenza A(H5N1) virus threatens animal and human health globally. Innovative strategies are crucial for mitigating risks associated with airborne transmission and preventing outbreaks. In this study, we sought to investigate the efficacy of microwave inactivation against aerosolized A(H5N1) virus by identifying the optimal frequency band for a 10-min exposure and evaluating the impact of varying exposure times on virus inactivation.

View Article and Find Full Text PDF

Pathogenesis of bovine H5N1 clade 2.3.4.4b infection in Macaques.

Nature

January 2025

Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA.

Since early 2022 highly pathogenic avian influenza (HPAI) H5N1 virus infections have been reported in wild aquatic birds and poultry throughout the United States (US) with spillover into several mammalian species. In March 2024, HPAIV H5N1 clade 2.3.

View Article and Find Full Text PDF

Virulence expression difference to intestinal cells of different pathogenic Listeria monocytogenes contaminating sausages after simulated digestive tract.

Int J Food Microbiol

January 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, PR China. Electronic address:

This study investigated the difference in survival among Listeria monocytogenes (LM) 10403S (highly pathogenic strain) and M7 (low pathogenic strain) in sausage under a simulated digestive environment, and established intestinal organoids and macrophages co-culture model to further explore the virulence expression difference to intestinal cells between LM 10403S and M7 after in vitro gastrointestinal digestion. Results showed that, compared with LM M7, LM 10403S exhibited a high survival rate during in vitro digestion, which may be due to the increased expression of stress response-related genes. In addition, the expression of virulence genes in LM 10403S was significantly higher than in LM M7 under the gastrointestinal environment.

View Article and Find Full Text PDF

Localised wastewater SARS-CoV-2 levels linked to COVID-19 cases: A long-term multisite study in England.

Sci Total Environ

January 2025

School of Environmental Sciences, UEA, NR4 7TJ, UK; NIHR Health Protection Research Unit in Emergency Preparedness and Response, London, UK. Electronic address:

Wastewater-based surveillance (WBS) can monitor for the presence of human health pathogens in the population. During COVID-19, WBS was widely used to determine wastewater SARS-CoV-2 RNA concentration (concentrations) providing information on community COVID-19 cases (cases). However, studies examining the relationship between concentrations and cases tend to be localised or focussed on small-scale institutional settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!