Ventricular catheter development: past, present, and future.

J Neurosurg

Division of Neurosurgery, Department of Surgery, Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee.

Published: December 2016

Cerebrospinal fluid diversion via ventricular shunting is the prevailing contemporary treatment for hydrocephalus. The CSF shunt appeared in its current form in the 1950s, and modern CSF shunts are the result of 6 decades of significant progress in neurosurgery and biomedical engineering. However, despite revolutionary advances in material science, computational design optimization, manufacturing, and sensors, the ventricular catheter (VC) component of CSF shunts today remains largely unchanged in its functionality and capabilities from its original design, even though VC obstruction remains a primary cause of shunt failure. The objective of this paper is to investigate the history of VCs, including successful and failed alterations in mechanical design and material composition, to better understand the challenges that hinder development of a more effective design.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2015.12.JNS151181DOI Listing

Publication Analysis

Top Keywords

ventricular catheter
8
csf shunts
8
catheter development
4
development future
4
future cerebrospinal
4
cerebrospinal fluid
4
fluid diversion
4
diversion ventricular
4
ventricular shunting
4
shunting prevailing
4

Similar Publications

Treatment Options for Nosocomial Ventriculitis/Meningitis: A Case Report and Review of the Literature.

Pathogens

December 2024

Intensive Care Unit, Department of Anesthesiology and Critical Care, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece.

Ventriculo-meningitis or nosocomial meningitis/ventriculitis is a severe nosocomial infection that is associated with devastating neurological sequelae. The cerebrospinal fluid isolates associated with the infection can be Gram-positive or -negative, while the spp. is rarely identified.

View Article and Find Full Text PDF

Effects of In Vivo Contact Force on Pulsed-Field Ablation Efficacy in Porcine Ventricles.

J Cardiovasc Electrophysiol

January 2025

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Background: Pulsed-field ablation (PFA) is an innovative non-thermal method for arrhythmia treatment. The efficacy of various PFA configurations in relation to contact force (CF) has not been well-studied in vivo.

Objectives: This study evaluated the effect of CF on acute bipolar PFA lesions in both a vegetal and an in vivo porcine heart model.

View Article and Find Full Text PDF

Pulsed field ablation (PFA) is a catheter-based procedure that utilizes short high voltage and short-duration electrical field pulses to induce tissue injury. The last decade has yielded significant scientific progress and quickened interest in PFA as an energy modality leading to the emergence of the clinical use of PFA technologies for the treatment of atrial fibrillation. It is generally agreed that more research is needed to improve our biophysical understanding of PFA for clinical cardiac applications as well as its potential as a potential alternative energy source to thermal ablation modalities for the treatment of other arrhythmias.

View Article and Find Full Text PDF

Characteristics of In Vivo Lesion Formation With a Temperature-Controlled Diamond-Tip Radiofrequency Ablation Catheter in the Ventricle: A Preclinical Model.

Circ Arrhythm Electrophysiol

January 2025

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN (T.H., M.E.R., O.Y., G.N.K., N.O., T.K., L.N., D.L.P., K.C.S.).

Background: Power-controlled radiofrequency ablation with irrigated-tip catheters has been the norm for ventricular ablation for almost 2 decades. New catheter technology has recently integrated more accurate tissue temperature sensing enabling temperature-controlled irrigated ablation. We aimed to investigate the in vivo ablation parameters and lesion formation characteristics in ventricular myocardium using a novel temperature-controlled radiofrequency catheter.

View Article and Find Full Text PDF

Background: Sequential application of radiofrequency with pulsed field (PF) ablation may increase lesion depth while preserving the advantages of PF. The study's aim was to determine lesion dimensions of sequential, colocalized radiofrequency and PF ablation.

Methods: A preclinical study using swine (n=4) performed lesions in the right/left ventricles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!