Surface electromyogram (SEMG) is a complex signal and is influenced by several external factors/artifacts. The electromyogram signal from the stump of the subject is picked up through surface electrodes. It is amplified and artifacts are removed before digitising it in a controlled manner so that minimum signal loss occurs due to processing. As removing these artifacts is not easy, feature extraction to obtain useful information hidden inside the signal becomes a different process. This paper presents methods of analysing SEMG signals using discrete wavelet Transform (DWT) for extracting accurate patterns of the signals and the performance of the used algorithms is being analysed rigorously. The obtained results suggest a root mean square difference (RMSD) value for the denoising and quality of reconstruction of the SEMG signal. The result shows that the best mother wavelets for tolerance of noise are second order of symmlets and bior6.8. Results inferred that bior6.8 suitable for the classification and analysis of SEMG signals of different arm motions results in a classification accuracy of 88.90%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/03091902.2016.1139202 | DOI Listing |
Biomed Tech (Berl)
January 2025
College of Ocean, Jiangsu University of Science and Technology, Zhenjiang, China.
Objectives: In recent years, significant progress has been made in the research of gesture recognition using surface electromyography (sEMG) signals based on machine learning and deep learning techniques. The main motivation for sEMG gesture recognition research is to provide more natural, convenient, and personalized human-computer interaction, which makes research in this field have considerable application prospects in rehabilitation technology. However, the existing gesture recognition algorithms still need to be further improved in terms of global feature capture, model computational complexity, and generalizability.
View Article and Find Full Text PDFBiosci Trends
January 2025
Department of Rehabilitation, Beijing Rehabilitation Hospital Capital Medical University, Beijing, China.
In human-computer interaction, gesture recognition based on physiological signals offers advantages such as a more natural and fast interaction mode and less constrained by the environment than visual-based. Surface electromyography-based gesture recognition has significantly progressed. However, since individuals have physical differences, researchers must collect data multiple times from each user to train the deep learning model.
View Article and Find Full Text PDFJ Oral Rehabil
January 2025
Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
Background: Surface electromyography (sEMG) has been used in a wide range of studies conducted in the field of dysphagia.
Objectives: The main aim of this case-control study is to obtain how submental and infrahyoid sEMG signals differ based on residue, penetration and aspiration.
Methods: A total of 100 participants (50 patients with suspected dysphagia and 50 healthy controls) were enrolled in the present study.
Nanophotonics
January 2025
Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Shien-Ming Wu School of Intelligent Engineering, South China University of Technology, Guangzhou, 511442, P. R. China.
Surface electromyogram (sEMG) serves as a means to discern human movement intentions, achieved by applying epidermal electrodes to specific body regions. However, it is difficult to obtain high-fidelity sEMG recordings in areas with intricate curved surfaces, such as the body, because regular sEMG electrodes have stiff structures. In this study, we developed myoelectrically sensitive hydrogels via 3D printing and integrated them into a stretchable, flexible, and high-density sEMG electrodes array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!