Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.

Inorg Chem

Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, 2 rue de la Houssinière, BP3229, 44322 Nantes, France.

Published: March 2016

The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.5b02662DOI Listing

Publication Analysis

Top Keywords

iron selenide
12
selenide layers
8
layers iron
8
ba2f2fe15se3 intergrowth
4
intergrowth compound
4
iron
4
compound iron
4
layers
4
selenide compound
4
compound ba2f2fe15se3
4

Similar Publications

Solar-Driven Sulfide Oxidation Paired With CO Reduction Based on Vacancies Engineering of Copper Selenide.

Small

December 2024

Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin, 300350, P. R. China.

Photovoltaic-driven electrochemical (PV-EC) carbon dioxide reduction (COR) coupled with sulfide oxidation (SOR) can efficiently convert the solar energy into chemical energy, expanding its applications. However, developing low-cost electrocatalysts that exhibit high selectivity and efficiency for both COR and SOR remains a challenge. Herein, a bifunctional copper selenide catalyst is developed with copper vacancies (v-CuSe) for the COR-SOR.

View Article and Find Full Text PDF

[Na(HO)][FeSe] was synthesized using hydrothermal methods and characterized by single-crystal X-ray diffraction, Fe Mössbauer spectroscopy, magnetization, and muon spin resonance (μSR) measurements. The cubic crystal structure (space group 23, = 11.785 Å, = 2) contains heterocubane-type clusters with symmetry.

View Article and Find Full Text PDF

Controlled synthesis of hierarchical flowerlike cobalt tin sulfide (SnCoS) is successfully obtained using the chelation of the biomolecule l-asparagine with cobalt-tin metal cations by a hydrothermal technique. l-asparagine plays a crucial role as an inducer and a good structure-directing activity. Subsequently, pine needle-shaped cobalt iron selenium (FeCoSe) is tightly deposited on the SnCoS surface to construct cobalt tin sulfide coated with cobalt iron selenide (FeCoSe@SnCoS) heterostructure, which has exposed more active sites and the most abundant channels for electron/ion transfer.

View Article and Find Full Text PDF

Zinc selenide is an excellent matrix material to dope with rare-earth and transition metal to achieve mid-infrared luminescence to develop high power lasers. The luminescence, morphology and refractive index is significantly affected by the doping and defects generated due to size and valency of dopants, concentration, growth process and convection during the growth. The aim of the study is to investigate effect of point and line defects generated due to low doping of iron and chromium on the emission and morphology of the zinc selenide.

View Article and Find Full Text PDF

Design and Optimization of Iron-Based Superionic-Like Conductor Anode for High-Performance Lithium/Sodium-Ion Batteries.

Small Methods

September 2024

Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, and School of Materials Science and Engineering, Changchun University of Technology, Changchun, 130012, China.

Metal selenides have received extensive research attention as anode materials for batteries due to their high theoretical capacity. However, their significant volume expansion and slow ion migration rate result in poor cycling stability and suboptimal rate performance. To address these issues, the present work utilized multivalent iron ions to construct fast pathways similar to superionic conductors (Fe-SSC) and introduced corresponding selenium vacancies to enhance its performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!