Biomarkers encompass a wide range of different measurable indicators, representing a tangible link to physiological changes occurring within the body. Accessibility, sensitivity, and specificity are significant factors in biomarker suitability. New biomarkers continue to be discovered, and questions over appropriate selection and assessment of their usefulness remain. If traditional markers of inflammation are not sufficiently robust in their specificity, then perhaps alternative means of detection may provide more information. Epigenetic drift (epigenetic modifications as they occur as a direct function with age), and its ancillary elements, including platelets, secreted microvesicles (MVs), and microRNA (miRNA), may hold enormous predictive potential. The majority of epigenetic drift observed in blood is independent of variations in blood cell composition, addressing concerns affecting traditional blood-based biomarker efficacy. MVs are found in plasma and other biological fluids in healthy individuals. Altered MV/miRNA profiles may also be found in individuals with various diseases. Platelets are also highly reflective of physiological and lifestyle changes, making them extremely sensitive biomarkers of human health. Platelets release increased levels of MVs in response to various stimuli and under a plethora of disease states, which demonstrate a functional effect on other cell types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749768 | PMC |
http://dx.doi.org/10.1155/2016/2465763 | DOI Listing |
Vaccines (Basel)
November 2024
Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy.
: HBV infections can lead to serious liver complications that can have fatal consequences. In 2022, around 1.1 million individuals died from HBV-related cirrhosis and hepatocellular carcinoma.
View Article and Find Full Text PDFGeroscience
December 2024
Department of Ecology, Evolution, and Marine Biology, Department of Molecular, Cellular, and Cell Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA.
Significant links between aging and DNA methylation are emerging from recent studies. On the one hand, DNA methylation undergoes changes with age, a process termed as epigenetic drift. On the other hand, DNA methylation serves as a readily accessible and accurate biomarker for aging.
View Article and Find Full Text PDFEnviron Epigenet
November 2024
Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy.
Among the various environmental pollutants, dioxin, a highly toxic and widely used compound, is associated with numerous adverse health effects, including a potentially toxic multigenerational effect. Understanding the mechanisms by which dioxin exposure can affect sperm epigenetics is critical to comprehending the potential consequences for offspring health and development. This study investigates the possible association between weighted epimutations, hypothesized as markers of epigenetic drift, and dioxin exposure in sperm tissues.
View Article and Find Full Text PDFSTAR Protoc
December 2024
Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Cambridge CB2 0XY, UK.
Here, we present a protocol for iterative enrichment of integrated single guide RNA (sgRNA) via derivative CRISPR-Cas9 from genomic DNA (gDNA) of phenotypically sorted fixed cells. We describe steps for high-scale lentiviral production, genome-wide screening, extracting gDNA from fixed cells, cloning of integrated sgRNAs, and high-scale transformation. This protocol introduces three key advantages: (1) applicability to fixed cells, (2) bypassing epigenetic drift, and (3) pause points lowering the contamination risk.
View Article and Find Full Text PDFMult Scler J Exp Transl Clin
December 2024
Department of Brain and Behavioral Sciences, Università di Pavia, Pavia, Italy.
Background: Multiple sclerosis (MS) is an autoimmune condition characterized by inflammatory and neurodegenerative traits. Recently, DNA methylation has emerged as a promising field of investigation for elucidating dynamics characterizing MS development and progression.
Objectives: This study aimed to comprehensively investigate the role of epigenetics in MS by analyzing the methylation profiles from blood and brain tissues from public datasets.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!