Cancer vaccines that have utilized various immunization strategies to induce antitumor immunity have largely failed in clinical settings. We have recently developed a cancer vaccine using a cytomegalovirus (CMV) based vector that expressed a modified melanoma antigen that elicited a robust antitumor CD8 T cell response and tumor rejection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4760325 | PMC |
http://dx.doi.org/10.1080/2162402X.2015.1056974 | DOI Listing |
Hum Vaccin Immunother
December 2025
Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
Although neo-antigen mRNA vaccines are promising for personalized cancer therapy, their effectiveness is often limited by the immunosuppressive tumor microenvironment (TME). The adenosine AA receptor (AAR) inhibits dendritic cell (DC) function and weakens antitumor T cell responses through hypoxia-driven mechanisms within the TME. This review explores a novel strategy combining neo-antigen mRNA vaccines with AAR antagonists (AARi).
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
Background: Arginase-1 (Arg1) expressing tumor-associated macrophages (TAMs) may create an immune-suppressive tumor microenvironment (TME), which is a significant challenge for cancer immunotherapy. We previously reported the existence of Arg1-specific memory T cells among peripheral blood mononuclear cells (PBMCs) and described that Arg-1-based immune modulatory vaccines (IMVs) control tumor growth and alter the M1/M2 macrophage ratio in murine models of cancer. In the present study, we investigated how Arg1-specific T cells can directly target TAMs and influence their polarization.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea. Electronic address:
Glucose-regulated protein 94 (GRP94) overexpression plays a critical role in tumor cell survival across various cancers. Previously, we developed K101.1, a fully human antibody targeting cell surface GRP94, which effectively inhibits tumor angiogenesis in colorectal cancer (CRC).
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Basic Medicine, Ningxia Medical University, Yinchuan, People's Republic of China.
Background: Colorectal cancer (CRC) is a highly malignant and aggressive gastrointestinal tumor. Due to its weak immunogenicity and limited immune, cell infiltration lead to ineffective clinical outcomes. Therefore, to improve the current prophylaxis and treatment scheme, offering a favorable strategy efficient against CRC is urgently needed.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
Background: Human Papillomavirus (HPV) is the most common sexually transmitted lower genital tract infection worldwide and the main etiological factor of cervical cancer (CC). Since 2006, vaccines have been implemented to reduce CC-related morbidity and mortality. This systematic review and meta-analysis aimed to evaluate the prevalence of cervical infections by non-vaccine high-risk HPV (HR-HPV) types in women vaccinated against types 16 and 18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!