Many drug controlled release methods have been integrated in multifunctional nanoparticles, such as pH-, redox-, temperature-, enzyme-, and light-responsive release. However, few report is associated with the ROS responsive drug controlled release. Herein, a thioketal linker-based ROS responsive drug (camptothecin conjugated with thioketal linker, abbreviated as TL-CPT) was prepared and the thioketal linker could be cleaved by ROS(reactive oxygen species). To achieve cancer simultaneous optical imaging, photodynamic therapy and chemotherapy, the photosensitizer Chlorin e6(Ce6), TL-CPT and carboxyl-mPEG were loaded on the upconversion nanoparticles (UCNPs), which were named as Ce6-CPT-UCNPs. Under 980 nm laser irradiation, Ce6-CPT-UCNPs emitted a narrow emission band at 645-675 nm which was overlapped with Ce6 absorption peak. Ce6 absorbed the light to produce ROS, which was used for photodynamic therapy and to cleave the thioketal linker in Ce6-CPT-UCNPs to release camptothecin for chemotherapy. Meanwhile, Ce6 absorbed the light, was used for near-infrared fluorescence imaging. The in vivo biodistribution studies showed that the prepared nanoparticles had high orthotopic lung cancer targeting efficiency. The in vivo therapeutic results demonstrated that NCI-H460 lung cancers could be completely eliminated by combining chemo- and photodynamic therapy under 980 nm laser irradiation. The prepared multifunctional Ce6-CPT-UCNPs have great potential in applications such as cancer targeted fluorescent imaging, simultaneous ROS activated chemo- and photodynamic therapy in near future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775857 | PMC |
http://dx.doi.org/10.7150/thno.14101 | DOI Listing |
Photochem Photobiol
December 2024
Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
Pathogens can be involved in tumor initiation, promotion, and progression through different mechanisms, and their treatment can prevent new cancer cases, improve outcomes, and revert poor-prognostic phenotypes. Photodynamic therapy (PDT) successfully treats different types of cancers and infections and, therefore, has a unique potential to address their combination. However, we believe this potential has been underutilized, and few researchers have investigated the impacts of PDT of both infection-related and cancer-related outcomes at once.
View Article and Find Full Text PDFJ Eur Acad Dermatol Venereol
December 2024
Department of Dermatology, Medical University of Vienna, Vienna, Austria.
Background: Conventional photodynamic therapy (cPDT) is an effective treatment option for field cancerization and multiple actinic keratoses (AK). The main side effect of cPDT is pain during illumination which in severe cases might necessitate early termination of treatment. Modification of treatment parameters such as light dose and fluence rate is a promising approach to mitigate PDT-associated pain.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China. Electronic address:
Although there has been significant progress in current comprehensive anticancer treatments centered on surgery, postoperative recurrence and tumor metastasis still significantly affect both prognosis and quality of life of the patient. Hence, the development of precisely targeted tumor therapies and exploration of immunotherapy represent ideal strategies for tumor treatment. Photodynamic therapy (PDT) is a localized and relatively safe treatment modality that not only induces multiple modes of tumor cell death but also mediates the secondary immunological responses against tumor resistance and metastasis.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2024
Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia. Electronic address:
Objective: The objective was to systematically review original studies that assessed the influence of antimicrobial photodynamic therapy (aPDT) for managing peri-implant diseases among habitual nicotinic product (NP) users.
Methods: The research question was "Is aPDT effective for managing peri-implant diseases among NP users?" Indexed databases (PubMed/Medline, EMBASE, Scopus, and ISI Web of Knowledge) and Google Scholar were searched up to and including December 2024 without time and language barriers. Using Boolean operators, the following keywords were searched in different combinations: antimicrobial photodynamic therapy; crestal bone loss; peri-implant diseases; probing depth; nicotine; and smoking.
JACS Au
December 2024
Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium.
Proton-coupled electron transfer (PCET) is a fundamental redox process and has clear advantages in selectively activating challenging C-H bonds in many biological processes. Intrigued by this activation process, we aimed to develop a facile PCET process in cancer cells by modulating proton tunneling. This approach should lead to the design of an alternative photodynamic therapy (PDT) that depletes the mitochondrial electron transport chain (ETC), the key redox regulator in cancer cells under hypoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!